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Faupin

Introduction

The
abstract
framework

Spectral de-
composition

Regularized
functional
calculus

1 Introduction

2 The abstract framework

3 Spectral decomposition

4 Regularized functional calculus



Spectral
decomposi-

tion of
some non-
self-adjoint
operators

Jérémy
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Some motivations (I)

Nuclear optical model

• Feshbach, Porter and Weisskopf (’54): nuclear optical model describing both
elastic scattering and absorption of a neutron targeted onto a nucleus

• “Pseudo-Hamiltonian” on L2(R3)

H = −∆ + V (x)− iW (x)

with V and W real-valued, bounded and compactly supported, W ≥ 0

• −iH generates a strongly continuous semigroup of contractions. Dynamics
described by the Schrödinger equation{

i∂tut = Hut
u0 ∈ D(H)

• Probability that the neutron, initially in the normalized state u0 (supposed to be
orthogonal to bound states), eventually escapes from the nucleus:

pscatt(u0) = lim
t→∞

∥∥e−itHu0

∥∥2

• Probability of absorption:

pabs(u0) = 1− lim
t→∞

∥∥e−itHu0

∥∥2

• Empirical model widely used in Nuclear Physics



Spectral
decomposi-

tion of
some non-
self-adjoint
operators

Jérémy
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Some motivations (II)

PT -symmetric operators

• [Bender, Boettcher ’98]: large class of ‘PT -invariant Hamiltonians’ have real
spectra

• For Schrödinger operators H = −∆ + V (x) on L2(Rd ), PT -symmetry means
that

V (−x) = V (x)

• [Borisov, Krejcirik ’08, ’12], [Wen, Bender ’20]: examples of PT -symmetric
Schrödinger operators having continuous spectra

Non-self-adjoint operators in Quantum Mechanics

• Holomorphic families of closed operators [Dereziński and collaborators]

• [Bagarello, Gazeau, Szafraniec, Znojil ’15]: Non-Selfadjoint Operators in
Quantum Physics. Mathematical Aspects.

• [Krejcirik ’17]: Mathematical aspects of quantum mechanics with
non-self-adjoint operators.
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Abstract model

The model

• H complex Hilbert space

• Hamiltonian
H = H0 + V = H0 + CWC ,

with H0 ≥ 0, C ∈ B(H), C > 0 and relatively compact with respect to H0,
W ∈ B(H) arbitrary

• H is a closed operator with domain

D(H) = D(H0)

• −iH generates a strongly continuous group {e−itH}t∈R s.t.∥∥e−itH
∥∥ ≤ e‖V‖|t|, t ∈ R

• H∗ = H0 + CW ∗C with domain D(H∗) = D(H0)

• σess(H) = σess(H0) and σ(H) \ σess(H) consists of an at most countable
number of eigenvalues of finite algebraic multiplicities that can only accumulate
at points of σess(H)
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Point spectral subspace (I)

Point spectrum

σp(H) :=
{
λ ∈ C, Ker(H − λ) 6= {0}

}
Algebraic multiplicity of an eigenvalue λ ∈ σp(H):

mλ := dim
( ⋃
k≥1

Ker
(
(H − λ)k

))

Discrete spectrum and discrete spectral subspace

σdisc(H) := σ(H) \ σess(H) ⊂ σp(H)

• For λ ∈ σdisc(H), Riesz projection defined by

Πλ = −
1

2iπ

∫
γ
RH(z)dz, RH(z) = (H − z)−1,

where γ is a circle centered at λ, of sufficiently small radius

• Ran(Πλ) spanned by generalized eigenvectors of H associated to λ, u ∈ D(Hk )
s.t. (H − λ)ku = 0

• Discrete spectral subspace:

Hdisc(H) = Span
{
u ∈ Ran(Πλ), λ ∈ σdisc(H)

}cl
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Point spectral subspace (II)

Set of embedded eigenvalues

σemb(H) := σp(H) ∩ σess(H)

To define spectral projections corresponding to embedded eigenvalues

• We suppose the existence of a conjugation operator J ∈ B(H) satisfying

JD(H0) ⊂ D(H0) and ∀u ∈ D(H0), JHu = H∗Ju

• If λ ∈ σemb(H), we suppose that mλ <∞ and that the symmetric bilinear form

Ker((H − λ)mλ ) 3 (u, v) 7→ 〈Ju, v〉 is non-degenerate

• Under these conditions, there exists a basis (ϕk )1≤k≤mλ of Ker((H − λ)mλ )
such that 〈Jϕi , ϕj 〉 = δij , 1 ≤ i , j ≤ mλ. Then

Πλu :=

mλ∑
k=1

〈Jϕk , u〉ϕk , u ∈ H

•
Hemb(H) := Span {u ∈ Ran(Πλ), λ ∈ σemb(H)}cl
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Point spectral subspace (III)

Point spectral subspace

Hp(H) = Hdisc(H)⊕Hemb(H)
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Asymptotically disappearing states

Subspaces of asymptotically disappearing states

H±ads(H) :=

{
u ∈ H, lim

t→±∞
‖e−itHu‖ = 0

}cl

Relation with discrete generalized eigenstates

• Easy to see that

Span {Gen. eigenstates associated to λ,±Im(λ) < 0}cl ⊂H±ads(H)

×
generalized eigenstates u

exponentially decay:
‖e−itHu‖ → 0 as t → −∞

×

×××
××××

×

• Question: conditions implying that the previous inclusion becomes an equality?

• [Kato ’66] For small perturbations, H and H0 are similar, hence H±ads(H) = {0}
• For dissipative operators, Im(V ) ≤ 0, the question was left as an open problem

in [Davies ’80], with an answer given in [F., Fröhlich ’18]
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Absolutely continuous spectral subspace

Absolutely continuous spectral subspace

Hac(H) :=

{
u ∈ H, ∃cu > 0,∀v ∈ H,

∫
R

∣∣〈e−itHu, v
〉∣∣2dt ≤ cu‖v‖2

}cl

Relation with point spectral subspace of H∗

• Not difficult to verify that

Hac(H)⊂ Hp(H∗)⊥

• Question: conditions implying that the previous inclusion becomes an equality?

• Other definitions considered in the literature: [Davies ’79] for dissipative
operators, [Naboko ’76] using the theory of dilations of dissipative operators

• Under suitable assumption, coincides with the space of ‘scattering states’
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Spectral singularities (I)

Definition: Spectral singularity

1 λ ∈ σess(H) is an outgoing/incoming regular spectral point of H if λ is not an
accumulation point of eigenvalues located in λ± i (0,∞) and if the limit

CRH(λ± i0+)CW := lim
ε→0+

CRH(λ± iε)CW

exists in the norm topology of B(H)

2 λ is a regular spectral point of H if it is both an incoming and an outgoing
regular spectral point of H

3 Spectral singularity = not regular spectral point

×

×

regular spectral point:
limCRH(z)CW exists

both from above
and from below

×

×××
××××

× outgoing spectral singularity
incoming reg. spec. point
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Spectral singularities (II)

Remarks

For dissipative operators, similar definition in [F, Fröhlich ’18]. Other related notions:

• [Dunford ’58] (theory of spectral operators), [Schwartz ’59] (spectral singularity
= singular point of a ‘spectral resolution’ for non-self-adjoint operators)

• [F, Nicoleau ’19] (for dissipative operators, spectral singularity = point of the
essential spectrum where the scattering matrix is non-invertible)

• For one-dimensional Schrödinger operators (spectral singularity = zero of the
Jost function)

Some properties [F, Frantz]

• λ embedded eigenvalue ⇒ λ both outgoing and incoming spectral singularity

• At thresholds, outgoing and incoming spectral singularities coincide
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Spectral singularities (III)

Proposition (Schrödinger operators in 3-dimension)

Suppose that V is a complex-valued potential such that 〈x〉σV (x) ∈ L∞(R3) with

σ > 1. Let C(x) = 〈x〉−σ/2. Then for all λ > 0, the following conditions are
equivalent:

1 λ is an outgoing/incoming spectral singularity of H = −∆ + V

2 There exists Ψ 6= 0, 〈x〉−σ/2Ψ ∈ L2, Ψ satisfying the outgoing/incoming
Sommerfeld radiation condition, such that

(−∆ + V (x)− λ)Ψ = 0

The same holds at the threshold λ = 0 if 〈x〉σV (x) ∈ L∞(R3) with σ > 2

Remarks

• There is an abstract version of this proposition involving the Gelfand triple

Ran(C) ↪→H ↪→ (Ran(C))′.

• [Wang ’12]: For any λ > 0, one can construct a smooth compactly supported
potential V such that λ is a spectral singularity of H
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Hypotheses (I)

(H1) Limiting absorption principle for H0

sup
±Im(z)>0

∥∥CR0(z)C
∥∥ <∞

Remark

Satisfied for H0 = −∆, C(x) = 〈x〉−σ/2, σ > 2 in dimension d ≥ 3

Consequences

• The spectrum of H0 is purely absolutely continuous, i.e.

σpp(H0) = ∅, σac(H0) = σ(H0), σsc(H0) = ∅

• The limits CR0(λ± i0+)C exist for almost every λ ∈ σess(H), in the norm
topology of B(H)
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Hypotheses (II)

(H2) Eigenvalues of H

H only has a finite number of eigenvalues with finite algebraic multiplicities

Remark

• Satisfied for Schrödinger operators H = −∆ + V (x) in L2(R3) if V is
exponentially decaying [Frank, Laptev, Safronov ’16]

• Does not exclude embedded eigenvalues
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Hypotheses (III)

(H3) Spectral singularities for H

H only has a finite number of spectral singularities {λ1, . . . λn} ⊂ σess(H) and there
exist ε0 > 0 and integers ν1, . . . , νn, ν∞ ≥ 0 such that

sup
Re(z)∈σess(H),±Im(z)∈(0,ε0)

|r(z)|
∥∥CRH(z)CW

∥∥ <∞,
where z0 is an arbitrary complex number such that z0 ∈ ρ(H), z0 ∈ C \ R and

r(z) :=
1

(z − z0)ν∞

n∏
j=1

(z − λj )νj
(z − z0)νj

×

×

×spectral singularity λ:
CRH(z)CW blows up

at worst as
(z − λ)−ν for some ν

×

×

×
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Hypotheses (IV)

Remarks

• The factors (z − λj )νj ‘regularize’ the singularities of z 7→ CRH(z)CW as z
approaches λj . Dividing them by (z − z0)νj produces bounded terms

• The factor 1
(z−z0)ν∞ ‘regularize’ a possible singularity at ∞

• For Schrödinger operators H = −∆ + V (x) in L2(R3) with V compactly
supported, (H3) is satisfied with νj the multiplicity of the resonance λj and
ν∞ = 0
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Asymptotically disappearing states

Recall that

H±ads(H) :=

{
u ∈ H, lim

t→±∞
‖e−itHu‖ = 0

}cl

Theorem [F, Frantz]

Suppose that Hypotheses (H1)–(H3) hold. Then

H±ads(H) = Span {Gen. eigenstates associated to λ,±Im(λ) < 0}cl

Remark

For dissipative operators, analogous result proven in [F. Fröhlich ’18]. The proof in
[F. Fröhlich ’18] relies on the existence and properties of wave operators. Our proof
does not rely on scattering theory

Theorem (Consequence for Schrödinger operators)

Suppose that V is a complex-valued potential such that V ∈ L∞c (R3). Then the
previous theorem applies to H = −∆ + V .
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Hypotheses (IV)

(H4) Conjugation operator

There exists an anti-linear continuous map J : H → H such that

1 JD(H0) ⊂ D(H0) and ∀u ∈ D(H0), JH0u = H0Ju

2 JC = CJ and JW = W ∗J

Moreover, for all embedded eigenvalues λ ∈ σess(H), the symmetric bilinear form

Ker
(
(H − λ)mλ

)
3 (u, v) 7→ 〈Ju, v〉 is non-degenerate

Remark

For Schrödinger operators H = −∆ + V (x), J is the complex conjugation and
Hypothesis (H4) means that for all embedded eigenvalues λ ∈ [0,∞),

Ker
(
(H − λ)mλ

)
3 (u, v) 7→

∫
R3

u(x)v(x)dx is non-degenerate
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Absolutely continuous spectral subspace
Recall that

Hac(H) :=

{
u ∈ H, ∃cu > 0,∀v ∈ H,

∫
R

∣∣〈e−itHu, v
〉∣∣2dt ≤ cu‖v‖2

}cl

Theorem [F, Frantz]

Suppose that Hypotheses (H1)–(H3) hold. If H has embedded eigenvalues, suppose
in addition that (H4) holds. Then

Hac(H) = Hp(H∗)⊥

Remark: comparable results in the literature (only for H dissipative)

[Simon ’79] for dissipative Schrödinger operators, [Davies ’80] for abstract dissipative
operators using the theory of dilations, with a different definition of Hac and a
different result (Hac coincides with the orthogonal complement of ‘bound states’)

Theorem (Consequence for Schrödinger operators)

Suppose that V is a complex-valued potential such that V ∈ L∞c (R3) and the
previous hypothesis on embedded eigenvalues is satisfied. Then the previous theorem
applies to H = −∆ + V
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Spectral decomposition

Consequence of the previous two theorems

Suppose that Hypotheses (H1)–(H4) hold. Then we have the following J-orthogonal
direct sum decompositions of the Hilbert space:

H = Hac(H)⊕Hp(H)

= Hac(H)⊕Hdisc(H)⊕Hemb(H)

= Hac(H)⊕H+
ads(H)⊕H−ads(H)⊕Hb(H),

where Hb(H) is the space of ‘bound states’, i.e. the closure of the vector space
spanned by all generalized eigenvectors of H corresponding to real eigenvalues (either
isolated or embedded)
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Regularized Stone formula

Stone’s formula for self-adjoint operators

Suppose H is a self-adjoint operator without embedded eigenvalues. Then

Id =
∑

λ∈σdisc(H)

Πλ + w-lim
ε→0+

1

2πi

∫
σess(H)

(
RH(λ+ iε)− RH(λ− iε)

)
dλ

Regularized version

Recall that we have assumed

sup
Re(z)∈σess(H)
±Im(z)∈(0,ε0)

|r(z)|
∥∥CRH(z)CW

∥∥ <∞, r(z) =
1

(z − z0)ν∞

n∏
j=1

(z − λj )νj
(z − z0)νj

Then, under our assumptions, we have

r(H) =
∑

λ∈σdisc(H)

r(H)Πλ + w-lim
ε→0+

1

2πi

∫
σess(H)

r(λ)
(
RH(λ+ iε)− RH(λ− iε)

)
dλ
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Idea of the proof

Riesz-Dunford functional calculus

r(H) = −
1

2iπ

∫
Γε

r(z)RH(z)dz then ε→ 0+

×

×

×

×

radius ε

×

×

×

radius ε−3

Figure: The contour Γε.
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Functional calculus (I)

Recall Hypothesis (H1):
sup

±Im(z)>0

∥∥CR0(z)C
∥∥ <∞

Proposition (Functional calculus in intervals not containing spectral
singularities)

Suppose (H1). Let I ⊂ R be a closed interval and suppose that there exists ε0 > 0
such that

sup
Re(z)∈I ,±Im(z)∈(0,ε0)

∥∥CRH(z)CW
∥∥ <∞.

Then the map

Cb(I ) 3 f 7→ f (H) := w-lim
ε→0+

1

2πi

∫
I
f (λ)

(
RH(λ+ iε)− RH(λ− iε)

)
dλ ∈ B(H)

Remark

Related to the Dunford-Schwartz theory of spectral operators
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Functional calculus (II)

Proposition (Regularized functional calculus)

Suppose (H1). Let I ⊂ R be a closed interval and suppose that there exists ε0 > 0
and a bounded holomorphic function h such that

sup
Re(z)∈I

±Im(z)∈(0,ε0)

|h(z)|
∥∥CRH(z)CW

∥∥ <∞, λ 7→ sup
0<ε<ε0

|h′(λ± iε)| ∈ L2(I ).

Then the map

Cb,reg(I ) 3 f 7→ f (H) := w-limε→0+
1

2πi

∫
I
g(λ)

(
h(λ+ iε)RH(λ+ iε)

− h(λ− iε)RH(λ− iε)
)
dλ ∈ B(H)

is an algebra morphism and there exists c > 0 such that

‖f (H)‖B(H) ≤ c‖g‖L∞ .

Here
Cb,reg(I ) :=

{
f : I → C, ∃g ∈ Cb(I ), f = hg}

Remark

Other functional calculi for operators on Banach spaces under an assumption of
polynomial growth of the resolvent near the real axis: [Davies ’95] (general theory),
[Georgescu, Gérard, Häfner ’13] (Krein spaces)
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Spectral singularities and resonances (I)

H = L2(Rd), H0 = −∆, V compactly supported

Resonance may be defined as a pole of the map

C 3 z 7→ (H − z2)−1 : L2
c(R3)→ L2

loc(R3),

Then
Spectral singularity at λ > 0 = resonance at ± λ1/2

Remarks

• Resonances theory: [Sjöstrand ’02], [Dyatlov-Zworski ’18]

• [Wang ’12]: For any λ > 0, one can construct a smooth compactly supported
potential V such that λ is a spectral singularity of H
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Spectral singularities and resonances (II)

Example: H = L2(R3), H0 = −∆, V short-range

If V (x) = O(〈x〉−δ) with δ > 1, then ±λ1/2 (with λ > 0) may be called a resonance
of H if the equation (H − λ)u = 0 admits a distributional solution (called a resonant
state)

u ∈
⋂
σ>1

L2
−σ/2 \ L

2

satisfying the Sommerfeld radiation condition

u(x) = |x |−1e±iλ
1
2 |x|

(
a(

x

|x |
) + o(1)

)
, |x | → ∞,

with a ∈ L2(S2), a 6= 0. Here L2
−σ/2

=
{
f : R3 → C, x 7→ 〈x〉−

σ
2 f (x) ∈ L2(R3)

}



Spectral
decomposi-

tion of
some non-
self-adjoint
operators

Jérémy
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Spectral singularities: Characterization (I)

Assumption (given λ ∈ σess(H), with R0 := RH0 )

CR0(λ± i0+)C := lim
ε→0+

CR0(λ± iε)C exist in the topology of B(H) (∗)

Free Schrödinger operator in H = L2(R3)

• For λ > 0, the limits

〈x〉−s
(
−∆− (λ± i0+)

)
〈x〉−s ,

exist in the norm topology of B(H), for any s > 1
2

, where 〈x〉 := (1 + x2)
1
2

• If λ = 0, the limits
〈x〉−s(−∆± i0+)〈x〉−s ,

exist (and coincide) for any s > 1



Spectral
decomposi-

tion of
some non-
self-adjoint
operators

Jérémy
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Spectral singularities: Characterization (II)

Extension of the Hilbert space

• Let HC := Ran(C) equipped with 〈u, v〉HC
:= 〈C−1u,C−1v〉

• Let H′C be the anti-dual of HC . We obtain the Gelfand triple

HC ↪→H ↪→H′C
• Assuming that D(H0|HC

) := {u ∈ D(H0) ∩HC ,H0u ∈ HC} is dense in HC , H
extends to

H′ = H′0 + CWC ′ : H′C →H
′
C

• CR0(λ± i0+)C := limε→0+ CR0(λ± iε)C exists in B(H) is equivalent to

R0(λ± i0+) := lim
ε→0+

R0(λ± iε) exist in B(HC ,H′C )

Incoming/outgoing resonant states

Let λ ∈ σess(H) be a spectral singularity of H. The space H′±C (λ) ⊂ H′C of
outgoing/incoming resonant states corresponding to λ is defined by

H′±C (λ) := Ker
(
Id + R0(λ± i0+)CWC ′

)
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Spectral singularities: Characterization (III)

Theorem [F, Frantz]

Suppose that (∗) holds. The following conditions are equivalent:

1 λ is an outgoing/incoming spectral singularity of H

2 λ is an eigenvalue of H′ associated to an eigenvector Ψ ∈ H′±C (λ)

Some consequences

• λ embedded eigenvalue ⇒ λ both outgoing and incoming spectral singularity

• At thresholds, outgoing and incoming spectral singularities coincide

• Suppose that V is a complex-valued potential such that 〈x〉σV (x) ∈ L∞(R3)

with σ > 1. Let C(x) = 〈x〉−σ/2. Then for all λ > 0, the following conditions
are equivalent:

1 λ is an outgoing/incoming spectral singularity of H

2 There exists Ψ ∈ H′±C (λ) ⊂ L2
−σ/2

, Ψ 6= 0, such that

(−∆ + V (x)− λ)Ψ = 0

• The same holds at the threshold λ = 0 if 〈x〉σV (x) ∈ L∞(R3) with σ > 2
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Spectral singularities: Ingredient of the
proof

Proposition (Birman-Schwinger principle for spectral singularities)

Suppose that (∗) holds. Then the following conditions are equivalent:

1 λ is an outgoing/incoming regular spectral point of H

2 Id + CR0(λ± i0+)CW is invertible in B(H)

Remark

Birman-Schwinger principle recently studied in abstract non-self-adjoint settings:

• [Behrndt, ter Elst, Gesztesy ’20]

• [Hansmann, Krejcirik ’20]
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