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Introduction. The chiral model of twisted bilayer graphene

In this talk, we shall be concerned with some aspects of semiclassical
analysis for a class of non-self-adjoint operators coming from condensed
matter physics of 2D materials.

The chiral model of TBG

G. Tarnopolsky – A. Kruchkov – A. Vishwanath (2019) :

H(α) :=

(
0 D(α)∗

D(α) 0

)
, D(α) :=

(
2Dz̄ αU(z)

αU(−z) 2Dz̄

)
,

z = x1 + ix2 ∈ C, Dz̄ = 1
i ∂z̄ = 1

2i (∂x1 + i∂x2),

acting on L2(C;C4). Here U(z) is the Bistritzer–MacDonald potential,

U(z) = −iK
2∑
`=0

ω`e i〈z,ω
`K〉, K =

4π

3
, ω = e2πi/3, 〈z ,w〉 = Re (zw).
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The Hamiltonian H(α) is derived from the full Bistritzer–MacDonald
(2011) Hamiltonian by removing certain tunneling interactions between
the two sheets of graphene. The dimensionless coupling constant α is such
that the angle of twisting � 1/α.

Mathematical derivation :
Cancès-Garrigue-Gontier (2023), Watson-Kong-MacDonald-Luskin (2023).

Let

Λ := ωZ⊕ Z, Λ∗ =
4πi√

3
Λ.

Here Λ∗ = {k ∈ R2; 〈k , γ〉 ∈ 2πZ for every γ ∈ Λ} is the dual lattice.

Symmetries of the potential U :

U(z + γ) = e i〈γ,K〉U(z), γ ∈ Λ, U(ωz) = ωU(z), U(z̄) = −U(−z),

=⇒ U is periodic with respect to Γ = 3Λ.
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Flat bands
Performing a Floquet reduction of H(α), we are led to consider the family

Hk(α) := e i〈z,k〉H(α)e−i〈z,k〉 =

(
0 D(α)∗ − k

D(α)− k 0

)
, k ∈ C/Γ∗,

acting on L2(C/Γ;C4), with the domain H1(C/Γ;C4). Here Γ∗ is the dual
lattice of Γ. A flat band at zero energy for H(α) occurs when

0 ∈ SpecL2(C/Γ)(Hk(α))

for all k ∈ C, or equivalently, when

SpecL2(C/Γ)(D(α)) = C.

We have
D(α) : H1(C/Γ;C2)→ L2(C/Γ;C2), α ∈ C,

is Fredholm of index 0 such that

SpecL2(C/Γ)(D(α)) = SpecL2(C/Γ)(D(α)) + k , k ∈ Γ∗.
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The spectrum of D(α) and magic angles

Theorem (S. Becker, M. Embree, J. Wittsten, and M. Zworski (2022))

There exists a discrete set A ⊂ C such that

SpecL2(C/Γ)D(α) =

{
Γ∗, α /∈ A,
C, α ∈ A.

Figure – Spectrum of D(α) as α varies. Magic angles : 1/α, α ∈ A.
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Crucial component of the proof : symmetry protected eigenstates at 0,

Ker L2
ρ1,0

(C/Γ)D(α) 6= {0}, α ∈ C.

J. Galkowski – M. Zworski (2023) : an abstract formulation of the flat
band condition.

Figure – Reciprocals of magic angles for the Bistritzer-MacDonald potential
(Becker–Embree–Wittsten–Zworski (2022)).

S. Becker – T. Humbert – M. Zworski (2023) : the set A is infinite.

A. Watson – M. Luskin (2021), S. Becker – T. Humbert – M. Zworski
(2023) : existence of the first real positive magic α.
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Quantization condition for magic angles ?
Numerical observation by Tarnopolsky – Kruchkov – Vishwanath (2019),
Becker – Embree – Wittsten – Zworski (2022) : if α1 < α2 < · · ·αj < · · ·
is the sequence of all real α’s in A, then

αj+1 − αj ' 1.515, j ≤ 13.

A. Melin – J. Sjöstrand (2002), J. Sjöstrand – M.H. (2004 – 2018) :
quantization rules for eigenvalues of semi-classical non-self-adjoint analytic
operators in dimension 2.
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Can we apply the 2D non-self-adjoint machinery in this setting ?
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Spectra of elliptic first order scalar operators on tori
A. Melin – J. Sjöstrand (2002) : let

P = a(z)2Dz̄ + b(z)

on L2(C/Γ), with a, b ∈ C∞(C/Γ), a nowhere vanishing. We have :

λ ∈ SpecL2(C/Γ)(P)⇐⇒ F
(
b

a

)
(0)− λF

(
1

a

)
(0) ∈ Γ∗.

In particular, we get a lattice of eigenvalues precisely when

F
(

1

a

)
(0) 6= 0,

whereas if F (1/a) (0) = 0, we get

SpecL2(C/Γ)P =

{
C, F (b/a) (0) ∈ Γ∗,
∅, F (b/a) (0) /∈ Γ∗.

R. Seeley (1986) : a similar example in 1D, P(α) = e ixDx + αe ix ,
x ∈ R/2πZ.
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Protected states in the semiclassical limit

This talk : Understand the structure of protected eigenstates at 0 of D(α)
in the small angle limit 0 < α→∞ (within or without the magic set),

D(α)u = 0, u ∈ L2
ρ1,0(C/Γ;C2).

Semiclassical formulation with 0 < h =
1

α
� 1,

p(x , hDx)u = 0, p(x , hDx) = hD(α) =

(
2hDz̄ U(z)
U(−z) 2hDz̄

)
,

p(x , ξ) =

(
2ζ̄ U(z)

U(−z) 2ζ̄

)
, z = x1 + ix2, ζ = 1

2 (ξ1 − iξ2).
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Principally scalar reduction

Observe that

(hD(−α))(hD(α)) = q(x , hDx)⊗ 1C2 + hR(x),

where
q(x , ξ) = det p(x , ξ) = 4ζ̄2 − U(z)U(−z),

q(x , hDx) = (2hDz̄)2 − U(z)U(−z),

and

R(x) =

(
0 2Dz̄U(z)

−Dz̄U(−z) 0

)
,

to get
(q(x , hDx)⊗ 1C2 + hR(x)) u = 0.
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Classically forbidden regions

Figure – Left : the vertices of the hexagon in a fundamental domain of Λ are
given by the stacking points ±zS , zS = i/

√
3, i.e. points of high symmetry

satisfying ±ωzS ≡ ±zS mod Λ. Right : plot of log |u(z , α)| where u is the
protected state in the kernel of D(α) on H1(C/Γ) and α = 11.345. Dark blue
corresponds to |u| ' 10−7 and yellow to |u| ' 1 : we see exponential decay
|u(z , α)| ≤ e−c0/h near the hexagon and near its center.
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The Poisson bracket {q, q}

Figure – Left : the contour plot of |{q, q̄}|q−1(0)|, for q given by the
determinant of the semiclassical symbol of hD(α), α = 1/h,
q(x , ξ) = (2ζ̄)2 − U(z)U(−z). Right : the contour plot of |{q, q̄}|q−1(0)| over a
fundamental domain of Γ = 3Λ. The set where {q, q̄}|q−1(0) = 0 is in red.
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Classically forbidden regions for Schrödinger operators
Let

(−h2∆ + V (x)− E )u = 0, x ∈ Rn.

Exponential decay of eigenfunctions in the classically forbidden region
U = {x ∈ Rn;V (x) > E} is a consequence of ellipticity :

p(x0, ξ) = ξ2 + V (x0)− E 6= 0, x0 ∈ U , ξ ∈ Rn.

L. Lithner (1964), S. Agmon (1982), B. Simon (1984), B. Helffer – J.
Sjöstrand (1984).

For q(x , ξ) = (2ζ̄)2 − U(z)U(−z), there are no classically forbidden
regions in the sense of ellipticity,

∀ x0 ∈ R2 q−1(0) ∩ π−1(x0) = {ξ ∈ R2; q(x0, ξ) = 0} 6= ∅.

Here π : T ∗R2 3 (x , ξ) 7→ x ∈ R2 is the natural projection.

Use (analytic) hypoellipticity as a replacement ?
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Classically forbidden regions when {q, q̄} = 0

(q(x , hDx)⊗ 1C2 + hR(x))u = 0 |{q, q̄}|q−1(0)
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Theorem (M. Zworski – M.H. 2023)

Let U ⊂ R2 be open and let

P = P(x , hDx ; h) = Q ⊗ 1C2 + h

(
R11 R12

R21 R22

)
, x ∈ U,

be a principally scalar system of semiclassical differential operators with
real analytic coefficients in U, such that Q = q(x , hDx) is classically
elliptic of order 2, and Rk` = Rk`(x , hDx) are of order 1, for 1 ≤ k , ` ≤ 2.
Assume that for x0 ∈ U, we have

{q, q̄}|q−1(0)∩π−1(x0) = 0, {q, {q, q̄}}|q−1(0)∩π−1(x0) 6= 0,

and HRe q and HIm q are linearly independent on q−1(0) ∩ π−1(x0). If
Pu = 0 in U and ‖u‖L2(U) ≤ O(1), then there exists an h-independent
neighborhood Ω of x0 and C0, c0 > 0 such that for all 0 < h ≤ h0 we have,

|u(x ; h)| ≤ C0 e
−c0/h, x ∈ Ω.
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Related recent work : J. Sjöstrand – M. Vogel (2023) (fine tunneling
estimates for a model operator).

Example. Let
q(x , ξ) = ξ + ix2, (x , ξ) ∈ T ∗R,

with x0 = 0. Then

{q, q̄}(0, 0) = 0, {q, {q, q̄}} = −4i 6= 0,

so the bracket conditions hold.

If

0 = q(x , hDx)u =
h

i

(
∂x −

x2

h

)
u,

then
u(x ; h) = u(0, h)ex

3/3h.

For this to be uniformly bounded near 0, we need u(0; h) = O(1)e−c/h,
c > 0, and hence |u(x ; h)| ≤ e−c/2h for |x | small.
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Some words about the proof

Step I. Establish microlocal exponential decay of u.

Step II. From microlocal to local exponential decay.

When describing Step I, we need to recall the notion of the semiclassical
analytic wave front set of an h–tempered family h 7→ u(h) ∈ D′(U).

The key role is played by the FBI (Fourier-Bros-Iagolnitzer) – Bargmann
transform,

Thw(x) =

∫
e
i
hϕ0(x ,y)w(y) dy , ϕ0(x , y) = i

2 (x − y)2.

Given (y0, η0) ∈ T ∗U, we have (y0, η0) /∈WFa,h(u) precisely when
∃ δ > 0,C > 0, V = neigh(y0 − iη0,C2) such that

|Th(χu)(x)| ≤ C e(Φ0(x)−δ)/h, x ∈ V , 0 < h ≤ h0.

Here χ ∈ C∞0 (U), χ(y) = 1 in a neighborhood of y0, and

Φ0(x) := 1
2 |Im x |2 .
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FBI transforms are flexible objects, and in the proof we work with a local
transform of the form

Thu(x) =

∫
e iϕ(x ,y)/ha(x , y ; h)χ(y) u(y), dy , x ∈ neigh(x0,C2).

Here χ ∈ C∞0 (U), χ = 1 near y0, and ϕ ∈ Hol
(
neigh

(
(x0, y0),C4

))
, for

some x0 ∈ C2, is such that

−ϕ′y (x0, y0) = η0, Imϕ′′yy (x0, y0) > 0, detϕ′′xy (x0, y0) 6= 0.

The amplitude a(x , y ; h) is an elliptic classical analytic symbol in a
neighborhood of (x0, y0),

a(x , y ; h) ∼
∞∑
j=0

aj(x , y)hj ,

where aj are holomorphic, with a0 6= 0, and such that

|aj(x , y)| ≤ C j+1j j , j = 0, 1, 2, . . . .

J. Sjöstrand (1982).
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The FBI transform Thu of u is holomorphic and satisfies for each ε > 0,

|Thu(x)| ≤ Oε(1)e(Φ(x)+ε)/h, x ∈ neigh(x0,C2),

where the weight

Φ(x) = sup
y∈neigh(y0,R2)

(−Imϕ(x , y))

is strictly plurisubharmonic.

The definition of WFa,h(u) is independent of the choice of an FBI
transform :

Theorem (J. Sjöstrand, 1982)

We have (y0, η0) /∈WFa,h(u) if and only if there exist δ > 0, C > 0, and
V = neigh(x0,C2) such that

|Thu(x)| ≤ C e(Φ(x)−δ)/h, x ∈ V , 0 < h ≤ h0.
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Microlocal analytic hypoellipticity

Proposition

Let (0, h0] 3 h 7→ u(h) ∈ D′(U;C2) be h–tempered. If at some point
ρ = (y0, η0) ∈ q−1(0) we have

{q, q̄}(ρ) = 0, {q, {q, q̄}}(ρ) 6= 0, Hq(ρ) 6 ‖ Hq̄(ρ), ρ /∈WFa,h(Pu),

then ρ /∈WFa,h(u).

This result is based on the work of M. Kashiwara and T. Kawai (1979),
J.-M. Trépreau (1984), J. Sjöstrand (1982), A. Himonas (1986) in the
setting of analytic hypoellipticity. An alternative proof has been given
recently by J. Sjöstrand (2023).
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Reduction to hDx1

There exists a (vector-valued) FBI transform

Thu(x) =

∫
e iϕ(x ,y)/ha(x , y ; h)χ(y) u(y), dy , x ∈ neigh(0,C2),

such that for some δ > 0,

hDx1Thu(x) = Th(Pu)(x) +O(1)e(Φ(x)−δ)/h, x ∈ neigh(0,C2).

Here ϕ satisfies the complex eikonal equation

ϕ′x1
(x , y) = q(y ,−ϕ′y (x , y)), (x , y) ∈ neigh(0,C2)× neigh(y0,C2),

−ϕ′y (0, y0) = η0, Imϕ′′yy (0, y0) > 0, detϕ′′xy (0, y0) 6= 0.

This a well known consequence of analytic WKB in the scalar case (J.
Sjöstrand (1982)), and it also works for principally scalar systems.
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Subharmonic minorants
It follows that U(x ; h) = Thu(x) is essentially independent of x1,

hDx1U(x ; h) = O(1)e(Φ(x)−δ)/h, x ∈ neigh(0,C2),

and therefore

|U(x ; h)| ≤ Oε(1)e(Ψη(x2)+ε)/h, |x1| < η, |x2| < η.

Here
Ψη(x2) = inf

|x1|<η
Φ(x1, x2)

need no longer be subharmonic =⇒ we get

|U(x ; h)| ≤ Oε(1)e(Ψ̃η(x2)+ε)/h, |x1| < η, |x2| < η,

where Ψ̃η is the largest subharmonic minorant of Ψη. If we can show that

Ψ̃η(0) < Φ(0)

for all small η > 0, then ρ /∈WFa,h(u). (Idea of Kashiwara (1979).)
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Choosing the weight I

The complex eikonal equation has many solutions, so how do we choose
the right one ?

Model case : q(y , η) = η1 + iη2 + iy2
1 , (y0, η0) = (0, 0).

Proposition (long tradition . . . A. Himonas 1986)

There exists a real analytic canonical transformation

κ : neigh((y0, η0),T ∗U)→ neigh((0, 0),T ∗R2), κ(y0, η0) = (0, 0),

and a real analytic function a defined in a neighborhood of (0, 0), with
a(0, 0) 6= 0, such that

q ◦ κ−1 = a(y , η)q0(y , η), q0(y , η) := η1 + i (η2 + y1g(y , η2)) ,

where g is real valued real analytic satisfying g(0) = 0, g ′y1
(0) 6= 0, and

g ′y2
(0) = 0.
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Choosing the weight II
To work with the approximate model symbol in the proposition, we use a
scaling argument (taking a = 1 for simplicity),

q̃0(y , η) =
1

µ2
q0(µy , µ2η), 0 < µ� 1.

We have, for 0 6= c ∈ R,

q̃0(y , η) = η1 + iη2 + icy2
1 +O(µ).

It follows that the complex eikonal equation{
ϕ′x1

(x , y) = q̃0(y ,−ϕ′y (x , y)),

ϕ|x1=0 = i
2 (x2 − y2)2 + iy2

1

has a unique solution in a small fixed neighborhood of (0, 0) ∈ C2
x × C2

y ,

ϕ(x , y) =
i

2
(x2−y2+ix1)2+i(y1−x1)2+

ic

3

(
y3

1 − (y1 − x1)3
)

+µO((x , y)3).
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Choosing the weight III
The corresponding weight is given by

Φ(x) = 1
2 (Im x2 +Re x1)2 + (Im x1)2− 1

3c(Re x1)3 +O(|x1|4) +O(µ) |x |3 ,

and in particular,

Ψη(x2) = inf
|x1|<η

Φ(x) ≤ f (x2) +O(|x2|4) +O(µ) |x2|3 , |x2| < η,

where
f (ζ) =

c

3
(Im ζ)3

is superharmonic for Im ζ < 0, (for c > 0). The largest subharmonic
minorant U of f in the disc |ζ| < 1 satisfies therefore

U(0) ≤ 1

π

∫∫
D(0,1)

U(ζ) L(dζ) <
1

π

∫∫
D(0,1)

f (ζ) L(dζ) = 0.

It follows then that
Ψ̃η(0) < Φ(0) = 0,

for all η > 0 and µ > 0 small enough.
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Choosing the weight IV

Associated to the phase function ϕ is the complex canonical
transformation

κϕ : T ∗C2 3 (y ,−ϕ′y (x , y)) 7→ (x , ϕ′x(x , y)) ∈ T ∗C2,

which satisfies

κϕ(neigh((0, 0),T ∗R2)) = ΛΦ ⊂ T ∗C2,

where
ΛΦ :=

{(
x , 2

i ∂xΦ(x)
)

; x ∈ neigh(0,C2)
}
.

We should incorporate the real canonical transformation giving the
approximate model symbol into an FBI transform.

Michael Hitrik (UCLA) 26 / 36



Choosing the weight V

Proposition

Let κ : neigh((y0, η0),T ∗U)→ neigh((0, 0),T ∗R2), κ(y0, η0) = (0, 0), be
a real analytic canonical transformation. Then the composition κϕ ◦ κ is of
the form

κϕ ◦ κ = κψ : T ∗C2 3 (y ,−ψ′y (x , y)) 7→ (x , ψ′x(x , y)) ∈ T ∗C2,

where ψ = ψ(x , y) ∈ Hol
(
neigh

(
(0, y0),C4

))
satisfies

−ψ′y (0, y0) = η0, Imψ′′yy (0, y0) > 0, detψ′′xy (0, y0) 6= 0.

J. Sjöstrand (1983). (Positivity of complex Lagrangian planes.)

Remark. We have

κψ(neigh((y0, η0),T ∗U)) = κϕ(neigh((0, 0),T ∗R2)) = ΛΦ,

so the weight is unchanged.
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One word about Step II
We have

(q(x , hDx)⊗ 1C2 + hR(x , hDx)) u = 0 in U,

where
|| u ||L2(U) ≤ O(1).

If x0 ∈ U satisfies the assumptions of the Theorem, then Step I gives :

WFa,h(u) ∩ q−1(0) ∩ π−1(x0) = ∅.

Here we recall that
q(x , ξ) =

∑
|α|≤2

aα(x)ξα

is classically elliptic,∣∣∣∣∣∣
∑
|α|=2

aα(x)ξα

∣∣∣∣∣∣ ≥ 1

C
|ξ|2 , (x , ξ) ∈ T ∗U.

Michael Hitrik (UCLA) 28 / 36



Proposition

Let (q(x , hDx)⊗ 1C2 + hR(x , hDx)) u = 0 in U, x0 ∈ U, and assume that

WFa,h(u) ∩ q−1(0) ∩ π−1(x0) = ∅,

where q is classically elliptic. Then then there exists a neighborhood Ω of
x0 and C0, c0 > 0 such that∣∣∣∂βu(x ; h)

∣∣∣ ≤ C0(|β|C0)|β|e−c0/h, x ∈ Ω, β ∈ Nn.

This result is closely related to A. Martinez (2002) and can also be
obtained as a consequence of the theory of global FBI transforms and
global exponentially weighted spaces developed by J. Galkowski – M.
Zworski (2021, 2022), allowing exponential weights which are not
compactly supported in ξ.

Based on B. Helffer – J. Sjöstrand (1986), J. Sjöstrand (1996).
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Back to the chiral model of TBG
We have

(q(x , hDx)⊗ 1C2 + hR(x)) u = 0,

where

q(x , ξ) = (2ζ̄)2 − U(z)U(−z), z = x1 + ix2, ζ =
1

2
(ξ1 − iξ2) .

Symplectic structure on T ∗R2 :

σ = dξ1 ∧ dx1 + dξ2 ∧ dx2 = 2Re (dζ ∧ dz) = dζ ∧ dz + d ζ̄ ∧ dz̄ .

Poisson bracket :

{a, b} = a′ζb
′
z − b′ζa

′
z + a′

ζ̄
b′z̄ − b′

ζ̄
a′z̄ .

Exponential decay of solutions near x0 is guaranteed by q(x0, ξ) = 0 =⇒

{q, q̄}(x0, ξ) = 0, {q, {q, q̄}}(x0, ξ) 6= 0, HRe q(x0, ξ) 6 ‖ HIm q(x0, ξ).
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We have
q = 0⇐⇒ 2ζ̄ = ±

√
U(z)U(−z),

and
{q, q̄}|q−1(0) = ±8iIm

(
(U(z)U(−z))

1
2∂z(U(z)U(−z))

)
.

Let

H :=
⋃
±

2⋃
k=0

±(1 + ωk [0, 1
2 ])zS + Λ

be the hexagon spanned by the stacking points ±zS + Λ, zS = i/
√

3,
ωzS ≡ zS mod Λ. An elementary computation shows that

dq(ρ) 6= 0, {q, q̄}(ρ) = 0, ρ ∈ π−1(H) ∩ q−1(0).
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The second bracket
We have for ρ ∈ q−1(0) ∩ π−1(it), it ∈ ±zS(1, 3/2],

{q, {q, q̄}}(ρ) = −16V (∂z∂z̄V + ∂2
zV ) + 8((∂zV )2 − ∂z̄V ∂zV ).

Here V (z) = U(z)U(−z). It turns out that this expression can also be
understood and we get

{q, {q, q̄}}(ρ) = 128
9 π2(c − 1)2(2c + 1)(2c − 9) 6= 0, c := cos(2π

√
3t/3).

Conclusion : {q, {q, q̄}}(ρ) 6= 0 for ρ ∈ q−1(0) ∩ π−1(z), for z along the
open edges of the hexagon =⇒ the theorem applies there.
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What about the corners ?
We have

q−1(0) ∩ π−1(±zS) = {(±zS , 0)}, dq(±zS , 0) 6= 0,

and
{q, {q, q̄}}(±zS , 0) = 0,

with the first non-vanishing bracket given by

{q, {q, {q, {q, q̄}}}}(±zS , 0) = H4
q q̄(±zS , 0) 6= 0.

We have

q(zS + z , ζ) = 4ζ̄2 + iaz − bz2 +O(|z |3), a, b > 0.

Z. Tao – M. Zworski were recently able to treat the case of corners, by
means of a direct analysis of the complex eikonal equation

∂z1ϕ(z ,w , v) = 4 (∂vϕ(z ,w , v))2+iav−bw2+O((v ,w)3), z ∈ C2, w , v ∈ C.
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Explicit detailed analysis of the eikonal equation shows that

Ψ(z2) = inf
z1

Φ(z)

is of the form

Ψ(z2) = −1
3 Im (z3

2 ) + |z2|2 Im (z3
2 ) +O(|z2|6).

Here the largest subharmonic minorant U of |ζ|2 Im (ζ3) in the unit disk
satisfies

U(0) < 0,

and hence we can proceed as before.
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Exponential decay near the whole hexagon

Theorem (Z. Tao – M. Zworski – M. H. (2023))

Assume that

(D(α) + k)u = 0, u ∈ H1(C/Γ;C2), ‖u‖L2(C/Γ;C2) = 1.

Then there exists an α-independent open neighborhood Ω of the hexagon
spanned by the stacking points and C0, c0 > 0 such that

|u(z ;α)| ≤ C0e
−c0α, z ∈ Ω, α ≥ 1.
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What about the center of the hexagon ?
The origin (x , ξ) = (0, 0) (the center of the hexagon) is a doubly
characteristic point for q,

q(0, 0) = 0, dq(0, 0) = 0.

chiral model scalar model

(q(x , hDx) + hR(x))u = 0 q(x , hDx)u = 0

Lower order terms do seem to matter in this case !

THANK YOU VERY MUCH FOR YOUR ATTENTION !
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