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Problem Setting

O %) Q= UszlB(cj, r), Q°:=R*\Q,
O O FJ- :aB(CJ’,I’J’), F:UFJ-.
uine //‘ e O Particles are separated: dj; > 0 Vi, ;.

Incident field
O2u™™ — Au™ =0 in R?,

inc | 0 6tuinc | 1

u =v, v,

t=0 t=0 —
Cc
supp vp, v1 C Q°, compact
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O Q° = Ujl-vle(cj, rf), Q5 ° .= R? \ﬁs,
L rE—0B(c ), T =uUrt

/‘ diJ (@] [}
uine /‘ e O Particles are separated: dj; > 0 Vi, .
Incident field
VO, V]' nciaen (S

O2u™™ — Au™ =0 in R?,

u/nc| _ VO, 6tu/nc|t:0 =t

1
t=0
supp vo, v3 C ¢, compact

Sound-soft scattering: find u
0?0 — Auf =0 in Q%€

€, _ LE __ e, inc €
Yout=g"=-—u" onl",

U, =0, Of|,_q=0.

Asymptotic regime
Fix N, ¢cjand R;,i=1,...,N. Set r; = rf :=¢eR;.

Approximate u = 1€ for e — 0 (u° = O(log™ ' ¢)). Goal: |uspp — vell/l|uf]] — 0.
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Interesting from the theoretical viewpoint
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Interesting from the theoretical viewpoint
Such models have a potential in computations (cf. Barucq et al. 2021):

m typical for wave propagation: explicit
methods
(for well-chosen spatial discretization mass
matrix is easy to invert)

Figure: A tetrahedral mesh
generated by GMSH in a domain
with a small inclusion
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Interesting from the theoretical viewpoint
Such models have a potential in computations (cf. Barucq et al. 2021):

m typical for wave propagation: explicit
methods
(for well-chosen spatial discretization mass
matrix is easy to invert)

m CFL restriction: At < Ch

m small particles = need to mesh finely in
their vicinity+ CFL = small time step
(remedies: numerical (local time stepping /
locally implicit methods) or analytical
(asymptotic methods))

Figure: A tetrahedral mesh
generated by GMSH in a domain
with a small inclusion
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(Non-exhaustive) bibliography

Frequency-domain (Helmholtz with the frequency w) (see also P. Martin, Multiple scattering.
Interaction of time-harmonic waves with N obstacles):

generalized framework of Foldy, Lax (Foldy '45, Lax '51, '52), Cassier, Hazard '14

asymptotics by BIE: see Ramm '85, works by Challa, Sini, Bouzekri (also sometimes are
called Foldy-Lax models)

matched asymptotic expansions:
Bendali et al. '16,
Labat et al. '19 (electromag.)
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asymptotics by BIE: see Ramm '85, works by Challa, Sini, Bouzekri (also sometimes are
called Foldy-Lax models)

matched asymptotic expansions:
Bendali et al. '16,
Labat et al. '19 (electromag.)

Time-domain (P. Martin, Time-domain scattering 2021)

matched asymptotic expansions:
PhD of V. Matessi (2014), Barucq et al. 2021 (single obstacle),
Korikov 2014 (single obstacle),
PhD of S. Marmorat (2015) (2D transmission problem),
Korikov, Plamenevskii, 2017 (3D Maxwell in a bounded domain)

3D BIE (retarded potentials): M. Sini, H. Wang, Q. Yao 2021 (geometrical condition to
ensure stability)
This work: (mostly) 2D time-domain. We will derive a model as a Foldy-Lax model (explanation
to follow).
m first part: circles
m second part (in progress): extension to particles of general shapes
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Foldy-Lax in frequency domain: brief intro

Fourier-Laplace transform: Ff(w) = f et f(t)dt, Imw > 0.

2D Helmholtz (—A — w?) fundamental solution: G, (r) :=
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Foldy-Lax in frequency domain: brief intro

Fourier-Laplace transform: Ff(w) = f et f(t)dt, Imw > 0.

2D Helmholtz (—A — w?) fundamental solution: G (r) := iHy (wr)

A Foldy-Lax model
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O O ° O e e. . i (wp)g e,[¢,

@ © TN 2 s

N circles 0% (pe'®) = H?”E Z; 8o+ O(e)

27

1 inc i Ainc
8o = 5 / 0" (ee'®)dp ~ —i"™(0) + O(e).

0

5/32



Foldy-Lax in frequency domain: brief intro

Fourier-Laplace transform: Ff(w) = f et f(t)dt, Imw > 0.

2D Helmholtz (—A — w?) fundamental solution: G (r) := iHy (wr)

A Foldy-Lax model
o 9 ; - -
(0] mN=1,c0=0n=c¢ g:—a'"‘| =3,e%g
O O ° O e e. . i (U)p)g e,[¢,

@ © TN 2 s

N circles 0% (pe'®) = H?”E Z; 8o+ O(e)

27

1 inc i Ainc
8o = 5 / 0" (ee'®)dp ~ —i"™(0) + O(e).

0

H“ (wp)

O(e
(o )+ ()

(") = ~0"(0)

5/32



Foldy-Lax in frequency domain: brief intro

Fourier-Laplace transform: Ff(w) = f et f(t)dt, Imw > 0.

2D Helmholtz (—A — w?) fundamental solution: G, (r) :=

A Foldy-Lax model
@ S =y
O = N=1 ~inc Gw X —cC
0.0 509 = 0" (e ST

N circles

5/32



Foldy-Lax in frequency domain: brief intro

Fourier-Laplace transform: Ff(w) = f et f(t)dt, Imw > 0.

2D Helmholtz (—A — w?) fundamental solution: G, (r) :=

A Foldy-Lax model
{%HIH! (:) Yy
N ~E ~E ~inc G(JJ X C
C : 0°(x) = 05, = =0 (C1)7(I;| ") 1ll)

O o
@ O m N>1
cnll)

0 (x) = B5pp(x) = Zf ”X)

Solves the Helmholtz eq.

in R?\ {cn}

N circles

5/32



Foldy-Lax in frequency domain: brief intro

Fourier-Laplace transform: Ff(w) = f et f(t)dt, Imw > 0.

2D Helmholtz (—A — w?) fundamental solution: G, (r) :=

A Foldy-Lax model
@ S =y
O = N=1 ~inc Gw X —cC
0.0 509 = 0" (e ST
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@ O m N>1
cnll)

0 (x) = B5pp(x) = Zf '“)

Solves the Helmholtz eq.

in R?\ {cn}

N circles

Theorem (Cassier, Hazard '14, where the model is also derived rigorously)

_Amz:(c)_As Z)\s M7 k:l,,N
pors Gu(rn)

Then, as ¢ — 0, [|4° — d5ppll2k) S Co for all compact K C Q°.

_£
K Tiog 2]
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Foldy-Lax model in time domain: first idea

Frequency domain

- Gulllx — call)
ZA ()

qe se Gu(llek — ¢all)
(ek) Ak+§ A - , k=1,...,N.
por Gu(rs)

AInC
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Foldy-Lax model in time domain: first idea

Frequency domain

- Gulllx — call)
ZA G(rs) ’

5 ||Ck C"'”)
E+ —_——2 k=1,...,N.
(ck) = nik/\ G (r9) , e,

Rewriting in the time domain

G(t,r) == 5- \F}% 2D Green fn for the wave equation (H(t) is Heaviside fn)

= A7 627(r7)
Foldy-Lax apprOX|mat|on

N N
upL(x, ) = Z/O G(t =7 llx = eal )z (r)dr =D G(t, lIx — eall) * 12 (2)
n=1 n=1

AInC

0" (e t) = Gt ) pE(8) + D G(E llew = eoll) i (E), k=1, N,
n#k
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Numerical simulations

Stability? Convergence?
Uniform Stability: for a sufficiently regular u™, for all eg > € > 0, for all t > 0,
luZop ()2, < Coeom(L + )| [|pss(0,em R2)) -

loc

Convergence: ||us,, — u®||/||uf|| = 0, as € — 0.

7/32



Numerical simulations

We compare Foldy-Lax and FEM solutions (with the PML to bound the comp. domain)
U = —e 2> gin(20(t —x-d)), d=(0,1)7

(OS5 =Te CRCEI T d = 0.01 (~ 1/12)). NELEININEE T = 4

Discretization: trapezoid rule convolution quadrature (Lubich '88, '94).

Simulations were performed with the help of the DEAL.II library (Arndt et al. '21)

50001
04
03
02
—o1

< o z;
Foldy-Lax - -

50001
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Numerical simulations

We compare Foldy-Lax and FEM solutions (with the PML to bound the comp. domain)
U = —e 2> gin(20(t —x-d)), d=(0,1)7

(O] S=T W [EINIIN o = 0.2 (~ 1.6)). IELEIRdINEE 7 = 8

Discretization: trapezoid rule convolution quadrature (Lubich '88, '94).

Simulations were performed with the help of the DEAL.II library (Arndt et al. '21)
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Numerical simulations

We compare Foldy-Lax and FEM solutions (with the PML to bound the comp. domain)
U = —e 2> gin(20(t —x-d)), d=(0,1)7

(O] S=T W [EINIIN o = 0.2 (~ 1.6)). IELEIRdINEE 7 = 8

Discretization: trapezoid rule convolution quadrature (Lubich '88, '94).

Simulations were performed with the help of the DEAL.II library (Arndt et al. '21)

1000
o8
06
04
o2

AY R

oz X o
Foldy-Lax o

g

e ee

Exponential blow up (can be proven rigorously, occurs also in less exotic situations!)

8/32



An instability result

O An example instability result

N=3, rn=rand 0<dj=ar, a <2, Vi,j

For some u™™ € C*°(R; x R?), some t, — 400, and
A

C)\,A >0,
At > exe™

(a similar result holds for uj,,).
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for some geometries the FL model is unstable (lack of robustness)
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Stabilization

Start with the boundary representations:
Single-layer representation ETM(SRIIECR N fot G(t—1,lIx —ylDps(r,y)drdr,.
Time-domain single-layer BIE

—u"(t,x) = [ro [y G(t =7 |Ix = yl)us(7,y)d7dl,, x€T*.
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Outline of what follows

m derivation in the frequency domain

m passing to the time domain
m stability (will skip the statement itself) and convergence analysis

H some numerics
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Galerkin Foldy-Lax model

Single Layer Ansatz T CIIES i Jre Gu(llx —yIDAG(y)dly = 8°4°, xe Q€
SN EERER: given g5 € HY2(M9), find o € H7Y/2(T9), sit.

N
W= [ Gllx—yDii)r, xer s g =S
n=1 ﬁ
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Galerkin Foldy-Lax model
Singe Loer v AT S BT (OO
BRI given 2° € H/2(r), find o= € H7V/2(T°), st
N
=Y [ Gulx =y, xer® < g7 =57
n=1 rs

TR So(D) = {6 € H2(TD): 6 = const), S := TT1L, SolTD)
The Galerkin Foldy-Lax model in the frequency domain

Find iz € S5, s.t. for all ¢ € Sg,

<§Ea¢>H1/2,H—1/2 = (seﬂZ‘a ¢>H1/2,H—1/2'
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Galerkin Foldy-Lax model
Singe Loer v AT S BT (OO
BRI given 2° € H/2(r), find o= € H7V/2(T°), st
N
=Y [ Gulx =y, xer® < g7 =57
n=1 rs

TR So(D) = {6 € H2(TD): 6 = const), S := TT1L, SolTD)
The Galerkin Foldy-Lax model in the frequency domain

Find iz € S5, s.t. for all ¢ € Sg,

<§Ea¢>H1/2,H—1/2 = (seﬂZ‘a ¢>H1/2,H—1/2'

The Galerkin Foldy-Lax model more explicitly

(Taking ¢ =1 on I'{ and zero otherwise). Find fig € cV s

/ de_ ﬂzn//c (Ix = y|)dr, dr., k=1,... N.
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Passing from the frequency domain to the time domain

Frequency domain
Find & € C", sit.

N
/ g5 (x)dly = Zﬁz,n/ / Go(llx —y|)dr, dr,, k=1,...,N.
e n=1 rf H

k

The field is approximated as follows:

N
()= /r Go(llx = yIDic.dly = S*hG, xe€ Q™
n=1 H
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Passing from the frequency domain to the time domain

Frequency domain

Find 4& € C", s.
N
/ g (x)dre = > s / / Gu(lx — yl)dr, drs, k=1,...,N.
re n=1 k n
The field is approximated as follows:
0°(x) = Z / Gulllx - yl)it.qdr, = S°A5, x €9

Time-domain

Find ug € C%(0, T;RY), s.t.

N t
/gg(t,x)drxzz/ (/ / g(t—'r,||x—y||)drydrx> Je () k=1,...,N.
r; o \Jre Jrs

KE (t—7)

The field then can be found by computing time-domain convolutions

N t
ue(t =3 / (/ g(r—f,nx—yn)dry) Jen(r)dr, x € Q5.
n=1 ﬁ
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The previously 'unstable’ configuration

Z X o ) Z X
Stabilized Foldy-Lax tgz Foldy-Lax

Convergence analysis

What is a convergence order of the newly designed model?

I\g
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Error analysis

Analysis: frequency domain (Imw > 0 (ensures invertibility of all operators involved))+
explicit dependence on w and e+Plancherel = time-domain

15/32
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(eE| RN BYA RS ET O Find g € Sg, s.t. for all ¢ € Sg,

(B @) B o1 = (SEREW). Bnpn= || Glllx = yDAERS)T.

xre
[i° satisfies the same but S§ replaced by H™Y/2(I'¢)
estimate ||4g — A%||y-1/2ey (= an estimate on [[u® — ug]|)
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(eE| RN BYA RS ET O Find g € Sg, s.t. for all ¢ € Sg,

(B @) B o1 = (SEREW). Bnpn= || Glllx = yDAERS)T.

xre
[i° satisfies the same but S§ replaced by H™Y/2(I'¢)
estimate ||4g — A%||y-1/2ey (= an estimate on [[u® — ug]|)

L2
Decomposition of H/*(I): | RE(NEERS £ H/?(re),

S5 ={p € H/*(): ¢lr: = const},

HA(M%) = {p € H2(T) 1 (%)) =0, Vo € S5},
Po, P resp. orthog. projectors (<= v=Pov+Piv=wv+vy)

Decomposition of H /2(I): | R (R RN AA (5!

HY2(M) = {p € HTY2(T%) : (@, %) y-1/2,4n2 =0, Vap € S5},
v=Psv+Plv=w+v,.

Coercivity/continuity constants of S, on different spaces have a different asymptotic

behavior w.r.t. € (seen e.g. from a scaling argument for one obstacle)
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Error analysis

RIS I GVA EVETLE G Find 4z € Sg, s.t. for all ¢ € S§,
(&°(w), #) = (S g (w), &). (GD)
E=pf-pi=é&+el
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Error analysis

RIS I GVA EVETLE G Find 4z € Sg, s.t. for all ¢ € S§,
(GD)

(&°(w), d) = (S" a5 (w), #)-

| The error: R TR S

Obtain a bound on €= in terms of the data (™)

Equation for the error

Soo := PoS°Py, ST. :=P.S°P71,
Sio = PLSEPS, SSl = POSEPj.

Same notation for operators restricted to the corresp. spaces S5y = PoS®|4e
0

Galerkin Foldy-Lax problem: YT 4
13 1> nNE A€
Exact problem: (sg" Sé”-) (lfé’) = (?g) )
1o SIL [ g1
The problem satisfied by the error:

e 5 A€ —\se _Q ne |
ST Si. el 81 1oMG 163



Error analysis
(55 8) (&) = (o —5uum)
STo Sii/)\ét 87 —Siohg
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Error analysis

(55 5) (8) = (e i)
sto si.)\e7) T &t - stons

&5 = —(S5) 'S5.é%,

61 = PL(S%)'PL (87 — S1ont) = PL(S)'PL (&% — SLo(Sh) '&5)
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Error analysis

(55 5) (8) = (e i)
T s,/ \et) T \et —stont

SJ_O SJ_J_

&5 = —(S5) 'S5.é%,

&% = P1L(S7) P (87 — STon) = PL(ST) P (&7 — STo(Sk) '&6)

Conclusion
1% 1,172 < IPL(S%) Pl (118002 + ISToll(S0) ~NIES )

®
I
|
| *
|
>
>
X
®
®
|
AN
[N
on

€511z < 11(S50) " ISGL Il ET 1,12
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Error analysis
(55 8) (&) = (o —5uum)
STo Sii/)\ét 87 —Siohg

&5 = —(S6) 'S5 &%,
&% = P1(S*)'PL (&7 — STont) = P1(S) P (87 — STo(Sk) &%)

151,172 < IPL(ST) P (”éi"l.,}k/? + IISioIIII(SSo)_lll||§§||Lz) ;

€511z < 11(S50) " ISGL Il ET 1,12

Convergence

inc |

Convergence=bounds on the operators+bounds on the data g = — u"| .
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Error analysis

165112 < PSPl (187l + S50l 1(S50) 115 1.2)

€511z < 11(S50) " I1SGL &I, -1/2

Bounds on the operators (following ideas of Hassan, Stamm '21)

With constants that depend on w, N and dj,

I(S50) IS = IPL(S) Pull S 1, [ISToll = IS5l S /7
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Error analysis

Conclusion

||éi||H*—1/2 S &

[E P

Bounds on the operators (following ideas of Hassan, Stamm '21)

With constants that depend on w, N and dj;,
1(S5) Ml S e IIPL(S)'PLl ST, [ISToll = IS5l S %7

Bounds on the data

With constants depending on W*>*(R?)-norms of u™:

18512 S <2 18ll,pe S e

Take-away message

The convergence is assured by
1850l ;12 S (behaviour of the data on the space orthogonal to the Galerkin space),

~

1SS oll = IIS6L]| S €¥?  (off-diagonal operator terms)
18/32



Final result (frequency domain)

[EIFERS e¥2, ||éJ‘|IH_1/2 < ¢e. Thus

~

~ o é é 1/
1% = A&y = (1651 +1€51-0) S 2
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SR GRGTEZE (Splitting of the error is important!)  Use Cauchy-Schwarz
and regularity of ®(y) = G.(x — y):

1/2
E0N < 11852 10| 2 < 32 o < 32 e < 2
176 (x)] S 11&5 . 2 < < S
r€
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Final result (time-domain, simplified)

Convergence of the density

1% = llioo o, im-1/2(rey) < € X Cull ™ a0, o= (re)y

The constant C,, depends polynomially on (the smallest distance between particles)’l,
number of particles, final time.
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Final result (time-domain, simplified)

Convergence of the density

1% = llioo o, im-1/2(rey) < € X Cull ™ a0, o= (re)y

The constant C,, depends polynomially on (the smallest distance between particles)’l,
number of particles, final time.

Super-convergence of the solution

Let x € QY. We have, as € — 0,

(. x) — UZ(-»X)”L‘X’(O,T) <e’x Cu||Uinc||H8(o,r;w1v°o(R2))-
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Numerical experiments

1 o0%04

0.5 OO OO

, s of O O

rf = r=0.1, data: u™(t,x) = e 100(t=dx=2) ©) 'O}
(Amin = 0.1) 0.5 o) o)

1 OOOOO

-1 05 0 05 1
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Numerical experiments

1 o0%04

0.5
Data
1

O ©)

O O

rt =r=0.1, data: u"(t,x) = o 100(t—d x—2)? 0 % 8
©) ©)

()\min ~ 01) ( ) 05
Experiment: compute u°(t, xo), xo = 0 depending on t
1 OO ©) OO
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Numerical experiments

1 o0%04
0.5

ril = r=0.1, data: Uinc(t, X) _ e—lOO(t—d.x—2)2 0
()\min ~ 01) 05

Experiment: convergence studies
1 C)() ©) C)()

05 0 05 1

00C04

O]
©)
©)
O

©

'
=

1073 1072 1071
eR
MK, A new class of uniformly stable time-domain Foldy-Lax models for scattering by small

particles. Acoustic sound-soft scattering by circles. To appear in SIAM:MMS
21/32



Other particles

This is a joint work with A. Savchuk (PhD student)

What happens to other particles

Same setting (sound-soft scattering), but with circles replaced by arbitrary Lipschitz
domains?
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Other particles

This is a joint work with A. Savchuk (PhD student)

What happens to other particles

Same setting (sound-soft scattering), but with circles replaced by arbitrary Lipschitz
domains?

The Galerkin Foldy-Lax model
Find ug € C*(0, T;RY), s.t.

N t
/ gi(t,)dr =3 / (/ / g(t—f,ux—yn)drydrx) 1% ().
ri n=1 0 I';f I'ﬁ

The first idea

The Galerkin FL model as above can be defined for any shape, and is a priori stable.
Let's see whether it converges.

22/32



Numerics

—20(t—d-x—2)?

The source u™™(t,x) = e , measure the 005
error on t € (0,4) at x = (0.2,0.2) 01

-0.2 -0.1 0 0.1 0.2

0.2
0.15
0.1
0.05

-0.05
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-0.15
-0.2
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Numerics

0.15
0.1
0
. 2
The source u™(t, x) = e~ 2(=9*=2" ‘measure the 005
error on t € (0,4) at x = (0.2,0.2) 01
-0.15
-0.2
0.2 0.1 0 0.1 0.2
101 E E|

10 ¢ 02
10~ 4 015
bl 01
10~ E 0.05
_ 1 0
10 F -0.05
10- ——e¢;, ellipse | ] 01
_ —=—¢j, shape 2| | 015
1077 ---O(log2¢) | 02

1076 L L L T T ] 0.2 0.1 0 0.1 02 03

107° 101 10*38 1072 107!

We have convergence in the relative error O(log™' €) (a 2D artifact, in 3D no
convergence), but we would like to have higher order. Open question: the error is still
not bad! 2332



The outline of what follows

a theoretical investigation of what happens with constant basis functions
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numerical experiments
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Why the model does not converge well (where the circular shape comes into play)

Simplification: frequency domain, one C*“ particle (centered in 0).

Goal: Find a good approximation to the exact solution and compare it with the one
obtained through the Foldy-Lax model

The Galerkin Foldy-Lax model

i [ Gulle—yldrydr == [ a™(dre, Gulr) = HP(wr)
rexre re

The exact density

/ Go(llx — YA (y)dTy = —6"(x) xere.
I—E
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Simplification: frequency domain, one C*“ particle (centered in 0).
Goal: Find a good approximation to the exact solution and compare it with the one
obtained through the Foldy-Lax model

The Galerkin Foldy-Lax model

i [ Gulle—yldrydr == [ a™(dre, Gulr) = HP(wr)
rexre re

The exact density

/r Gu(llx = y)A=(y)dly = =" (x) = —a"(0) + O(e), x€T".

Rescaling

With y = ey, x = ek, X,y € ",

r-:/ Go(e||% — y)At(ey)dTy = —i™(0) + O(e), xeT"
ri
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Why the model does not converge well (where the circular shape comes into play)

The Galerkin Foldy-Lax model

7% // Go(llx — yl)drydry = - / G (x)dT v, Gulr) =~ HP (wr).
rexre re 4

e / Go(ellx — yl)As(ey)dry = —G"(0) + O(c), x €T
r1

"y
H(ew||x — y|l) = = log(ew||x — y||) + C + O(eloge), & — 0+,

s

and this induces the decomposition
1
SLe =S+ (C— 5 logew) i + o(1),

—_————
CKAIE

1
Sko = —5- [ loglx —ylle)dry, g [ .
T Jri ri
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Why the model does not converge well (where the circular shape comes into play)

The Galerkin Foldy-Lax model

7 // Go(llx — yl)drydry = - / G (XN, Gulr) =~ HP (wr).
rexre re 4

Approximation

1
Sk =5 [ loBllx = ylen)dry, p= [ dr.
vy rt rt

(s}, + Coelrr + o(1)) ff(e) = —e 1™ (0) + O(1), xel!
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Why the model does not converge well (where the circular shape comes into play)

The Galerkin Foldy-Lax model

7 // Go(llx — yl)drydry = - / G (XN, Gulr) =~ HP (wr).
rexre re 4

Approximation

1
Sk =5 [ loBllx = ylen)dry, p= [ dr.
vy rt rt

(sé + Cocls + 0(1)) p(e)) = —e 10" (0) + O(1), xerl,

i.e. Sp/i°(e-) ~ const(w, &, 1(0))
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rexre re &

Final result

If o isst. Sgo = —5= [ log||x — yllo(y)dly, =1,

—1
i€ (ey) = 0"™(0) x o(y)+o(e togte), yel!

ca+ cloge
LGN 65 = 65 + 65, and 65 =15 =~ Cue tlogtexoi(e™ ) +o(e tog™e)

Orthogonal component: Bl PRERSE (- Le)

(the above is sharp, see Reichel '97: for non-circular domains, o1 # 0)
by a direct computation (with Galerkin Orthogonality):
G — 15 = O(log ™" €) x (Sofi1,1) = O(e ™" log > &)1

e — a6l 2qrey = O(s™?1og™2€) O(e*/?) for many circles, 0 for 1 circle
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An alternative idea

Inspired by Challa, Sini 2013, Sini, Wang, Yao 2021

6_1

ca+cologe

1

0 (y) = ﬁi"c(O) X a(e_ly) + o(e_1 log™" €)eo, y€T®,

where o € L*(I'") is a unique solution to — 5= [, log [|x — y||o(y)dl, = 1.
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An alternative idea

Inspired by Challa, Sini 2013, Sini, Wang, Yao 2021

Exact density

6_1

a+cloge

1

0 (y) = ﬁi"c(O) X ole7ly) + o(e_1 log™" €)eo, y€T®,

where o € L*(I'") is a unique solution to — 5= [, log [|x — y||o(y)dl, = 1.

Galerkin space
Let ok be given by

1
[ Golxey)onty) =1 x €Tk Goll —yl) =~ log [x ~ y1.
rt ™

k

The Galerkin space is then V¢ = Hszl span{ox(ety)}.

The Galerkin Foldy-Lax model
Find uS € C%(0, T;RY), s.t.

N t
/r &t Ronenar = 3 /0 ( / /r I G e Al dry> HE A (T)d.
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A brief summary

m for circles, we construct the Galerkin Foldy-Lax model by taking V¢ = S§
(constants)

LAnd these are only C%“-domains for which this is the case
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m for circles, we construct the Galerkin Foldy-Lax model by taking V¢ = S§
(constants)

m this idea fails for obstacles of other shapes

m for more general obstacles, we suggest to take the span of the 'equilibrium
densities:

1
e [ 1ogllx - yllouy) =1, xe T
™ Tk

N _
lLe. V& :=[I,_; span{ok(ety)}.
m for circles, the equilibrium densities are constants!

m analysis and numerics: for circles we observe O(&2)-convergence of the
absolute error in the solution

What follows: outline of the error analysis for arbitrary Lipschitz domains (O(e?)
convergence)

LAnd these are only C%“-domains for which this is the case
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Error analysis

Remark: we do the analysis in the frequency domain, like before

Problem

Before we had
consts L to consts

H(F®) = Sp + H:(T), se{-1/2,0,1/2},

the decomposition being orthogonal for s € {0,1/2}.
The convergence was achieved due to ||PS5Po*|| = O(£%/?) (not true in our case)
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Error analysis

Remark: we do the analysis in the frequency domain, like before

Problem

Before we had
consts L to consts

H(F®) = Sp + H:(T), se{-1/2,0,1/2},

the decomposition being orthogonal for s € {0,1/2}.
The convergence was achieved due to ||P 1 S5Po*|| = O(£¥?) (not true in our case)

H™Y2(T%) = Ve + HZ Y2 ().
(holds because o, (e71.) ¢ Hy */2(I%))
This decomposition is not orthogonal, but direct. We have, for any v € H_1/2(F5):
V = Vs + VU,L, Vo € V(E;y VO’,L S H*_l/z(ra)

Projectors: Qg : vi= Vo, Qp | 1 Vi Vo L.

Some norm estimates, independent of ¢

QS Q5 L[S m moreover, P;Q; = Pg
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A discussion of the new decomposition

The convergence was achieved due to ||P 1 S5Pg|| = O(e3/?) (does not hold true for
arbitrarily shaped particles).
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arbitrarily shaped particles).

Our analysis follows the same lines as before, but uses both decompositions (the old and
the new one). The crucial property, which is a counterpart of the above is

Now

IP1S5QL] < C(w)e? whenever |we| < const.

29/32



A discussion of the new decomposition

Before

The convergence was achieved due to ||P 1 S5Pg|| = O(e3/?) (does not hold true for
arbitrarily shaped particles).

Our analysis follows the same lines as before, but uses both decompositions (the old and
the new one). The crucial property, which is a counterpart of the above is

Now

IP1S5QL] < C(w)e? whenever |we| < const.

For 1 part., after the rescaling we obtain
SSow(e ") =eShook, and SL.ox ~ Sgox + Cwe/ ok + O(Jwe| log |we|)ok = const
ri

only if [we| is sufficiently small (thus 'orthogonal’ to H. '/*-space).

29/32



A discussion of the new decomposition

Before

The convergence was achieved due to ||P 1 S5Pg|| = O(e3/?) (does not hold true for
arbitrarily shaped particles).

Our analysis follows the same lines as before, but uses both decompositions (the old and
the new one). The crucial property, which is a counterpart of the above is

Now

IP1S5QL] < C(w)e? whenever |we| < const.

For 1 part., after the rescaling we obtain
SSow(e ") =eShook, and SL.ox ~ Sgox + Cws/ ok + O(Jwe| log |we|)ok = const
ri

only if [we| is sufficiently small (thus 'orthogonal’ to H. '/*-space).
Passage to the time-domain

Our estimates for the circles were uniform in frequency. Here we have convergence
estimates for |we| < 1/2 only. How do we pass to the time domain?
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Passage to the time domain

Trade regularity for convergence by using the stability estimate
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Passage to the time domain

Density error: low frequencies

18711 S (1 + |w)™ max(L, (Imw) =) |87 e, |we| < 1/2.
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and next a stability estimate (valid for any w : Imw > 0)

8% < & 2(1 + o)™ max(L, (Imw) ™™ )8 e

Density error: high frequencies

For |we| > 1/2, we have e ™' < 2|w|, thus
18°]) S e x e e T2 (L + fw)™ max(L, (Imw) ™) 8" e,

S e x w21+ |w])™ max(1, (Imw) ™) [[2"| e,

Back in the time-domain, the powers of w turn into derivatives = regularity
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Numerical results

. OOOO

Data o4

Scattering by many ellipses, the source o O O
) P 0

u™(t,x) = e~ 204 x=2" " measure the absolute error s

ont € (0,8) at x = (0,0) - O O O O
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A list of open questions

m high-order methods for arbitrary particles
m particles close to each other
m 3D Maxwell

m dispersive problems
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