

Resonance-free regions and structural optimization of scattering poles.

Illya Karabash

Institute for Applied Mathematics, the University of Bonn

The talk is based on the paper (K., Koch, Verbytskyi '20) with the background information from

(K. '11-14), (K., Logachova, Verbytskyi '17), (Albeverio, K. '17).

Spectral and Resonance Problems for Imaging, Seismology and Materials Science, the University of Reims, 20-24.11.2023

Photonic crystal designs of high-Q optical cavities

$$\partial_t \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{\epsilon_0 \varepsilon(x)} \nabla \times \\ -\frac{1}{\mu_0} \nabla \times & 0 \end{pmatrix} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix}$$

SEM images of US NRL-produced photonic crystal fiber. The diameter of the central solid core is 5 $\mu m,$ the diameter of the holes is 4 $\mu m.$

https://en.wikipedia.org/wiki/Photonic_crystal#/media/File:Photonic-crystal-fiber-from-NRL.jpg

$$\varepsilon(x) = \begin{cases} 1, & x \notin \Omega \\ \text{nonhomogeneous structure}, & x \in \Omega \end{cases}, \quad \Omega \subset \mathbb{R}^3 \text{ is bounded.} \end{cases}$$

Solutions $e^{-i\omega t} \begin{pmatrix} \widetilde{\mathbf{E}}(x) \\ \widetilde{\mathbf{H}}(x) \end{pmatrix}$ with outgoing eigenmodes $\begin{pmatrix} \widetilde{\mathbf{E}}(x) \\ \widetilde{\mathbf{H}}(x) \end{pmatrix}$ essentially correspond to continuation resonances (scattering poles) ω .

$$\partial_t \left(\begin{array}{c} \mathbf{E} \\ \mathbf{H} \end{array} \right) = \left(\begin{array}{cc} 0 & \frac{1}{\epsilon_0 \varepsilon(x)} \nabla \times \\ -\frac{1}{\mu_0} \nabla \times & 0 \end{array} \right) \left(\begin{array}{c} \mathbf{E} \\ \mathbf{H} \end{array} \right), \qquad \varepsilon(x) = 1 \text{ for } x \notin \Omega.$$

The set $\Sigma(\varepsilon)$ of resonances $\omega \in \overline{\mathbb{C}}_{-} = \{ \operatorname{Im} z \leq 0 \}$ is understood as the set of generalized eigenvalues associated with the radiation condition at ∞ (Sommerfeld/Silver-Müller radiation condition),

or

as the set of poles of the resolvent $(M_{\varepsilon} - \omega)^{-1}$ with a spatial cut-off analytically continued through the essential spectrum.

$$\alpha = \operatorname{Re} \omega$$
 is the (real-)frequency of eigen-oscillations $e^{-i\omega t} \begin{pmatrix} \widetilde{\mathbf{E}}(x) \\ \widetilde{\mathbf{H}}(x) \end{pmatrix}$,

 $\beta = Dr(\omega) = -Im \omega \ge 0$ is the decay rate.

Applied Physics studies of optical resonators with high Q-factor

Studies of photonic crystals having ω with high quality-factor

```
Q(\omega) = -\frac{1}{2} \frac{\operatorname{Re} \omega}{\operatorname{Im} \omega}
```

were inspired by miniaturization of Schrödinger 'cat' experiments. Cavity QED experiments, 2012 Nobel Prize of Serge Haroche and David Wineland.

Some of the designs:.

 Fabrication of 2-D photonic crystals with high-Q (Akahane, Asano, Song, Noda '03):

"... light should be confined gently in order to be confined strongly."

Design (A): centered defect in a periodic structure.

Numerically simulated 1-D photonic crystals with high-Q (Notomi, Kuramochi, Taniyama '08), fabrication (Kuramochi, Taniyama, Tanabe, Kawasaki, Roh, Notomi '10) : Design (P): gradually changed deviations from periodically alternating law

Design (B): gradually changed deviations from periodically alternating layers.

Some of the methods.

Numerical local maximization over a finite set of structural parameters (Liang, Johnson '13).

- (Asano, Noda '19) machine learning, deep neural network.
- (Vasco, Savona '21) particle swarm algorithms on multi-core architecture, modelling of random imperfections.
- (Fukuda, Asano, Takahashi, Noda '22) non-symmetric high-Q cavities.

Constraints:

- ε(x) = ε₁ = 1 or ε(x) = ε₂ for x in bounded Ω ⊂ ℝ^d, d = 1, 2, 3, the feasible family (set)
 𝔅 ∈ L[∞](Ω) : ε(x) = ε₁χ_{Ω₁}(x) + ε₂χ_{Ω₂}(x), Ω₂ = Ω\Ω₁)
- For d = 1, the relaxed family
 - $\mathbb{F} = \{ \varepsilon \in L^{\infty}(\Omega) : \epsilon_1 \leqslant \varepsilon(x) \leqslant \epsilon_2 \quad \text{ a.e.} \} .$

Numerics and Applied Math. minimization of decay rate $Dr(\omega) = -Im \omega$.

Some of the studies with the numerical minimization of the decay rate:

- (Kao, Santosa '08) 1-D and 2-D, search of local minimizers of | Im w| by iterative steepest ascent method.
 Difficulty with multiple resonances in 2-D is explicitly noticed.
- (Heider, Berebichez, Kohn, Weinstein '08) 1-D, steepest ascent method.
- (Osting, Weinstein '13), a nonexistence conjecture based on numerical evidence:

 $\underset{\substack{\varepsilon \in \mathbb{F} \\ \omega \in \Sigma(\varepsilon)}}{\arg\min} \operatorname{Dr}(\omega) = \varnothing, \qquad \inf_{\substack{\varepsilon \in \mathbb{F} \\ \omega \in \Sigma(\varepsilon)}} \operatorname{Dr}(\omega) = 0.$

 (Ogasawara '14, Bachelor thesis, UBC) under supervision of Richard Froese,
 Matlab's built-in optimization, 1-D Schrödinger eq. with δ-interactions, explicit nonexistence conjecture. Difficulty: sliding of iterations ω_n to $\infty \rightarrow$ (non)existence of optimizers.

Observations: high dielectric contrast designs,

close to periodic patterns with a defect in the center (Kao, Santosa '08), (Heider, Berebichez, Kohn, Weinstein '08).

The pioneering paper for 1-D and 3-D Schrödinger eq-s (Harrell, Svirsky '86).

Motivation: estimation of resonances of random potentials. The high contrast theorem for optimal designs under the additional assumption that optimal resonance is simple.

Main difficulties are identified:

multiple resonances, (non)existence of optimizers.

Multiple resonaces may exist even for 1-D Schrödinger operator (Korotyaev '04), examples for Krein strings with δ -masses (van den Brink, Young '01), (K. '13).

Pareto optimization formulation for 1-D optical cavities (TEM-waves):

(K. '11-13), (K., Logachova, Verbytskyi '17). Rigorous existence of optimizers.
(K. '14) Krein strings with the total mass constraints, hyperbolic billiard.
The analytic method of multi-parameter perturbations of resonances, including multiple resonances.

Special examples of explicitly calculated Pareto minimizers:

(K. '11-13) special Krein-Nudelman strings, the trace-type formulae method;
(K. '14) low frequency region under the total mass constraints on the string;
(Albeverio, K. '17) point interactions in 3-D,
symmetry breaking, nonuniqueness of optimizers.

The optimal control approach to 1-D optical cavities:

(K., Koch, Verbytskyi '20) reformulation of Pareto optimization of resonances as an optimal control problem (partially equivalent).

Maximum Principle, Hamilton-Jacobi-Bellman (HJB-) equation, extremal synthesis.

For symmetric cavities, combination of an analytically derived nonlinear eigenproblem with a special numerical shooting method allowed us to compute optimal structures.

 $-y''(s) = \omega^2 \varepsilon(s) y(s)$ $-i \frac{y'(s_{\pm})}{\omega} = \pm \sqrt{\epsilon_{\infty}} y(s_{\pm}) \qquad \text{(radiation boundary conditions).}$ $0 < \epsilon_1 \le \varepsilon(s) \le \epsilon_2 \text{ for } s_- < s < s_+ \text{ is the structure of a resonator,}$ $\varepsilon(s) \equiv \epsilon_{\infty} > 0 \text{ for } s \notin [s_-, s_+] \text{ is the homogeneous outer medium.}$ $\Sigma(\varepsilon) = \{\omega_i\} \subset \mathbb{C}_- := \{\operatorname{Im} z < 0\} \text{ is symmetric w.r.t. i}\mathbb{R}.$

(a) non-constant $\varepsilon(\cdot) : [s_-, s_+] \to \mathbb{R}_+$ (b) $\varepsilon(\cdot) \equiv \text{const} \neq \epsilon_{\infty}, s \in [s_-, s_+]$

$$-y''(s) = \omega^2 \varepsilon(s) y(s)$$

$$-i \frac{y'(s_{\pm})}{\omega} = \pm \sqrt{\epsilon_{\infty}} y(s_{\pm}) \qquad \text{(radiation boundary conditions)}.$$

 $0 < \epsilon_1 \leq \varepsilon(s) \leq \epsilon_2$ for $s_- < s < s_+$ is the structure of a resonator,

 $\varepsilon(s) \equiv \epsilon_{\infty} > 0$ for $s \notin [s_{-}, s_{+}]$ is the homogeneous outer medium.

 $\Sigma(\varepsilon) = \{\omega_j\} \subset \mathbb{C}_- := \{\operatorname{Im} z < 0\}$ is symmetric w.r.t. i \mathbb{R} .

(a) non-constant $\varepsilon(\cdot) : [s_-, s_+] \to \mathbb{R}_+$ (b) $\varepsilon(\cdot) \equiv \text{const} \neq \epsilon_{\infty}, s \in [s_-, s_+]$

$$\begin{split} -y''(s) &= \omega^2 \varepsilon(s) y(s) \\ -\mathrm{i} \frac{y'(s_{\pm})}{\omega} &= \pm \sqrt{\epsilon_{\infty}} y(s_{\pm}) \qquad \text{(radiation boundary conditions).} \\ 0 &< \epsilon_1 \leqslant \varepsilon(s) \leqslant \epsilon_2 \text{ for } s_- < s < s_+ \text{ is the structure of a resonator,} \\ \varepsilon(s) &\equiv \epsilon_{\infty} > 0 \text{ for } s \notin [s_-, s_+] \text{ is the homogeneous outer medium.} \\ \Sigma(\varepsilon) &= \{\omega_j\} \subset \mathbb{C}_- := \{\operatorname{Im} z < 0\} \text{ is symmetric w.r.t. i} \mathbb{R}. \end{split}$$

(a) non-constant $\varepsilon(\cdot) : [s_-, s_+] \to \mathbb{R}_+$ (b) $\varepsilon(\cdot) \equiv \text{const} \neq \epsilon_{\infty}, s \in [s_-, s_+]$

0

ε

.

$$\begin{aligned} -y''(s) &= \omega^2 \varepsilon(s) y(s) \\ -\mathrm{i} \frac{y'(s_{\pm})}{\omega} &= \pm \sqrt{\epsilon_{\infty}} y(s_{\pm}) \qquad \text{(radiation boundary conditions).} \\ 0 &< \epsilon_1 \leq \varepsilon(s) \leq \epsilon_2 \text{ for } s_- < s < s_+ \text{ is the structure of a resonator,} \\ \varepsilon(s) &\equiv \epsilon_{\infty} > 0 \text{ for } s \notin [s_-, s_+] \text{ is the homogeneous outer medium.} \\ \Sigma(\varepsilon) &= \{\omega_j\} \subset \mathbb{C}_- := \{\operatorname{Im} z < 0\} \text{ is symmetric w.r.t. } i\mathbb{R}. \end{aligned}$$

(a) non-constant $\varepsilon(\cdot) : [s_-, s_+] \to \mathbb{R}_+$ (b) $\varepsilon(\cdot) \equiv \text{const} \neq \epsilon_{\infty}, s \in [s_-, s_+]$

Resonances in symmetric 1-D photonic crystals

Let $0 < \epsilon_1 \leq \varepsilon(s) \leq \epsilon_2$ for $-\ell < s < \ell$ describe the resonator. Let $\varepsilon(s) \equiv \epsilon_{\infty} > 0$ for $s \notin [-\ell, \ell]$ be the homogeneous outer medium.

Assume additionally that ε is even, $\varepsilon(s) = \varepsilon(-s)$ (symmetry w.r.t. s = 0).

$$-y''(s) = \omega^2 \varepsilon(s) y(s), \qquad -i \frac{y'(\pm \ell)}{\omega} = \pm \sqrt{\epsilon_{\infty}} y(\pm \ell),$$

additionally $y'(0) = 0, \quad \text{or} \quad y(0) = 0.$

Resonance modes y are either even, or odd.

 \Rightarrow Reduction to $s \in [0, \ell]$ (or equivalently to $s \in [-\ell, 0]$).

The set $\Sigma(\varepsilon) = \Sigma^{\text{even}}(\varepsilon) \cup \Sigma^{\text{odd}}(\varepsilon)$ is the disjoint union of the sets of even-mode and odd-mode resonances.

Resonances in symmetric 1-D photonic crystals

Let $0 < \epsilon_1 \leq \varepsilon(s) \leq \epsilon_2$ for $-\ell < s < \ell$ describe the resonator. Let $\varepsilon(s) \equiv \epsilon_{\infty} > 0$ for $s \notin [-\ell, \ell]$ be the homogeneous outer medium.

Assume additionally that ε is even, $\varepsilon(s) = \varepsilon(-s)$ (symmetry w.r.t. s = 0).

$$-y''(s) = \omega^2 \varepsilon(s) y(s), \qquad -i \frac{y'(\pm \ell)}{\omega} = \pm \sqrt{\epsilon_{\infty}} y(\pm \ell),$$

additionally $y'(0) = 0, \quad \text{or} \quad y(0) = 0.$

Resonance modes y are either even, or odd.

⇒ Reduction to $s \in [0, \ell]$ (or equivalently to $s \in [-\ell, 0]$).

The set $\Sigma(\varepsilon) = \Sigma^{\text{even}}(\varepsilon) \cup \Sigma^{\text{odd}}(\varepsilon)$ is the disjoint union of the sets of even-mode and odd-mode resonances.

Resonances in symmetric 1-D photonic crystals

Let $0 < \epsilon_1 \leq \varepsilon(s) \leq \epsilon_2$ for $-\ell < s < \ell$ describe the resonator. Let $\varepsilon(s) \equiv \epsilon_{\infty} > 0$ for $s \notin [-\ell, \ell]$ be the homogeneous outer medium.

Assume additionally that ε is even, $\varepsilon(s) = \varepsilon(-s)$ (symmetry w.r.t. s = 0).

$$-y''(s) = \omega^2 \varepsilon(s) y(s), \qquad -i \frac{y'(\pm \ell)}{\omega} = \pm \sqrt{\epsilon_{\infty}} y(\pm \ell),$$

additionally $y'(0) = 0, \quad \text{or} \quad y(0) = 0.$

Resonance modes y are either even, or odd.

⇒ Reduction to $s \in [0, \ell]$ (or equivalently to $s \in [-\ell, 0]$).

The set $\Sigma(\varepsilon) = \Sigma^{\text{even}}(\varepsilon) \cup \Sigma^{\text{odd}}(\varepsilon)$ is the disjoint union of the sets of even-mode and odd-mode resonances.

The case $\varepsilon \equiv \text{const} > \epsilon_{\infty}$.

Pareto optimization and the resonance-free region.

$$-y''(s) = \omega^2 \varepsilon(s) y(s), \qquad -\frac{iy'(s_{\pm})}{\omega} = \pm \sqrt{\epsilon_{\infty}} y(s_{\pm})$$

Let us fix the resonator region $[s_-, s_+]$ and the outer permittivity ϵ_{∞} .

The constraints $0 < \epsilon_1 \leq \varepsilon(s) \leq \epsilon_2$ define the feasible family: $\mathbb{F}_{s_-,s_+} := \{ \varepsilon(x) \in L^{\infty}_{\mathbb{R}}(s_-,s_+) : \epsilon_1 \leq \varepsilon(x) \leq \epsilon_2 \text{ a.e.} \}.$

The set of achievable resonances is $\Sigma[\mathbb{F}_{s_{-},s_{+}}] := \bigcup_{\varepsilon \in \mathbb{F}_{s_{-},s_{+}}} \Sigma(\varepsilon).$

The set $\mathbb{C}\setminus\Sigma[\mathbb{F}_{s_{-},s_{+}}]$ is the resonance-free region (over $\mathbb{F}_{s_{-},s_{+}}$).

Main idea: "Pareto extremal" resonances are on the boundary $\partial \Sigma[\mathbb{F}_{s_-,s_+}]$, Pareto optimal resonances is the part of the boundary "closer to the real line".

Existence theorem for optimizers:

the set of achievable resonances $\Sigma[\mathbb{F}_{s_-,s_+}]$ is closed.

$$-y''(s) = \omega^2 \varepsilon(s) y(s), \qquad -\frac{i y'(s_{\pm})}{\omega} = \pm \sqrt{\epsilon_{\infty}} y(s_{\pm})$$

Let us fix the resonator region $[s_-, s_+]$ and the outer permittivity ϵ_{∞} .

The constraints $0 < \epsilon_1 \leq \varepsilon(s) \leq \epsilon_2$ define the feasible family: $\mathbb{F}_{s_-,s_+} := \{ \varepsilon(x) \in L^{\infty}_{\mathbb{R}}(s_-,s_+) : \epsilon_1 \leq \varepsilon(x) \leq \epsilon_2 \text{ a.e.} \}.$

The set of achievable resonances is $\Sigma[\mathbb{F}_{s_-,s_+}] := \bigcup_{\varepsilon \in \mathbb{F}_{s_-,s_+}} \Sigma(\varepsilon).$

The set $\mathbb{C}\setminus\Sigma[\mathbb{F}_{s_-,s_+}]$ is the resonance-free region (over \mathbb{F}_{s_-,s_+}).

Main idea: "Pareto extremal" resonances are on the boundary $\partial \Sigma[\mathbb{F}_{s_{-},s_{+}}]$, Pareto optimal resonances is the part of the boundary "closer to the real line".

Existence theorem for optimizers:

the set of achievable resonances $\Sigma[\mathbb{F}_{s_{-},s_{+}}]$ is closed.

$$-y''(s) = \omega^2 \varepsilon(s) y(s), \qquad -iy'(s_{\pm})/\omega = \pm \sqrt{\epsilon_{\infty}} y(s_{\pm})$$

 $\omega = \alpha - i\beta$ with $\beta = Dr(\omega) > 0$, while $\alpha \in \mathbb{R}$ is the frequency of a resonance ω .

The set of achievable frequencies $\operatorname{Re} \Sigma[\mathbb{F}_{s_-,s_+}] := \bigcup_{\omega \in \Sigma[\mathbb{F}_{s_-,s_+}]} \operatorname{Re} \omega$.

Def. (minimal decay rate $\beta_{\min}(\alpha)$ for an achievable frequency)

$$\beta_{\min}(\alpha) = \min_{\substack{\operatorname{Re}\omega = \alpha\\\omega \in \Sigma[\mathbb{F}_{s_{-}, s_{+}}]}} |\operatorname{Im}\omega|$$

Def. (Pareto optimizers for particular achievable frequencies α)

 $\omega_{\alpha} = \alpha - i\beta_{\min}(\alpha)$ is the resonance of minimal decay (for achievable α).

If $\omega_{\alpha} \in \Sigma(\varepsilon)$ for $\varepsilon \in \mathbb{F}_{s_{-},s_{+}}$, we say that ω_{α} and ϵ are of minimal decay (for α).

The Pareto (optimal) frontier is $Pa_{Dr} := \{ \alpha - i\beta_{\min}(\alpha) : \alpha \in \operatorname{Re} \Sigma[\mathbb{F}_{s_{-},s_{+}}] \}.$

Theorem. For every achievable α , **a** structure ε of minimal decay.

$$-y''(s) = \omega^2 \varepsilon(s) y(s), \qquad -iy'(s_{\pm})/\omega = \pm \sqrt{\epsilon_{\infty}} y(s_{\pm})$$

 $\omega = \alpha - i\beta$ with $\beta = Dr(\omega) > 0$, while $\alpha \in \mathbb{R}$ is the frequency of a resonance ω .

The set of achievable frequencies $\operatorname{Re} \Sigma[\mathbb{F}_{s_-,s_+}] := \bigcup_{\omega \in \Sigma[\mathbb{F}_{s_-,s_+}]} \operatorname{Re} \omega$.

Def. (minimal decay rate $\beta_{\min}(\alpha)$ for an achievable frequency)

$$eta_{\min}(lpha) = \min_{\substack{\operatorname{Re}\omega=lpha\ \omega\in\Sigma[\mathbb{F}_{s_-,s_+}]}} |\operatorname{Im}\omega|$$

Def. (Pareto optimizers for particular achievable frequencies α)

 $\omega_{\alpha} = \alpha - i\beta_{\min}(\alpha)$ is the resonance of minimal decay (for achievable α).

If $\omega_{\alpha} \in \Sigma(\varepsilon)$ for $\varepsilon \in \mathbb{F}_{s_{-},s_{+}}$, we say that ω_{α} and ϵ are of minimal decay (for α).

The Pareto (optimal) frontier is $Pa_{Dr} := \{ \alpha - i\beta_{\min}(\alpha) : \alpha \in \operatorname{Re}\Sigma[\mathbb{F}_{s_{-},s_{+}}] \}.$

Theorem. For every achievable α , **B** a structure ε of minimal decay.

$$-y''(s) = \omega^2 \varepsilon(s) y(s), \qquad -iy'(s_{\pm})/\omega = \pm \sqrt{\epsilon_{\infty}} y(s_{\pm})$$

 $\omega = \alpha - i\beta$ with $\beta = Dr(\omega) > 0$, while $\alpha \in \mathbb{R}$ is the frequency of a resonance ω .

The set of achievable frequencies $\operatorname{Re} \Sigma[\mathbb{F}_{s_-,s_+}] := \bigcup_{\omega \in \Sigma[\mathbb{F}_{s_-,s_+}]} \operatorname{Re} \omega$.

Def. (minimal decay rate $\beta_{\min}(\alpha)$ for an achievable frequency)

$$eta_{\min}(lpha) = \min_{\substack{\operatorname{Re}\omega=lpha\\omega\in\Sigma[\mathbb{F}_{s_-,s_+}]}} |\operatorname{Im}\omega|$$

Def. (Pareto optimizers for particular achievable frequencies α)

 $\omega_{\alpha} = \alpha - i\beta_{\min}(\alpha)$ is the resonance of minimal decay (for achievable α). If $\omega_{\alpha} \in \Sigma(\varepsilon)$ for $\varepsilon \in \mathbb{F}_{s_{-},s_{+}}$, we say that ω_{α} and ϵ are of minimal decay (for α).

The Pareto (optimal) frontier is $Pa_{Dr} := \{ \alpha - i\beta_{\min}(\alpha) : \alpha \in \operatorname{Re}\Sigma[\mathbb{F}_{s_{-},s_{+}}] \}.$

Theorem. For every achievable α , **a** structure ε of minimal decay.

$$-y''(s) = \omega^2 \varepsilon(s) y(s), \qquad -iy'(s_{\pm})/\omega = \pm \sqrt{\epsilon_{\infty}} y(s_{\pm})$$

 $\omega = \alpha - i\beta$ with $\beta = Dr(\omega) > 0$, while $\alpha \in \mathbb{R}$ is the frequency of a resonance ω .

The set of achievable frequencies $\operatorname{Re} \Sigma[\mathbb{F}_{s_-,s_+}] := \bigcup_{\omega \in \Sigma[\mathbb{F}_{s_-,s_+}]} \operatorname{Re} \omega$.

Def. (minimal decay rate $\beta_{\min}(\alpha)$ for an achievable frequency)

$$eta_{\min}(lpha) = \min_{\substack{\operatorname{Re}\omega=lpha\ \omega\in\Sigma[\mathbb{F}_{s_-,s_+}]}} |\operatorname{Im}\omega|$$

Def. (Pareto optimizers for particular achievable frequencies α)

 $\omega_{\alpha} = \alpha - i\beta_{\min}(\alpha)$ is the resonance of minimal decay (for achievable α).

If $\omega_{\alpha} \in \Sigma(\varepsilon)$ for $\varepsilon \in \mathbb{F}_{s_{-},s_{+}}$, we say that ω_{α} and ϵ are of minimal decay (for α).

The Pareto (optimal) frontier is $Pa_{Dr} := \{ \alpha - i\beta_{\min}(\alpha) : \alpha \in \operatorname{Re} \Sigma[\mathbb{F}_{s_{-},s_{+}}] \}.$

Theorem. For every achievable α , \exists a structure ε of minimal decay.

Explicitly calculated Pareto frontiers for 3-D Schrödinger eq. (Albeverio, K.'17).

Pareto optimization of resonances for 3-D Schrödinger eq. with δ -interactions at vertices of a regular tetrahedron with varying "strength" parameters.

Resonances $\omega = \alpha - i\beta_{\min}(\alpha)$ of minimal decay in the equidistant case $L = \pi$, N = 4: ---- marks the case where minimal number of δ -interactions is $n_{\min}(\omega) = 4$,

$$\cdots$$
 marks the case $n_{\min}(\omega) = 2$.

Weak symmetry breaking:

1) $\exists \alpha \in \mathbb{R}$ s.t. some of corresponding optimal structures do not possess all the symmetries of a regular tetrahedron.

2) For each $\alpha \in \mathbb{R} \setminus \{0\}$ \exists exactly one optimal structure that possesses all the symmetries.

3) Each optimal structure possesses at least one of the symmetries.

$$\begin{split} -y''(s) &= \omega^2 \varepsilon(s) y(s), \qquad -\mathrm{i} y'(\pm \ell) / \omega = \pm \sqrt{\epsilon_{\infty}} y(\pm \ell) \\ \mathbb{F}_{\ell}^{\mathrm{sym}} &:= \{ \varepsilon(s) \in L_{\mathbb{R}}^{\infty}(-\ell, \ell) \ : \ \epsilon_1 \leqslant \varepsilon(s) = \varepsilon(-s) \leqslant \epsilon_2 \text{ a.e. } \}. \end{split}$$

The closed sets of odd-mode and even-mode achievable resonances, $\Sigma^{\mathrm{odd}}[\mathbb{F}^{\mathrm{sym}}_{\ell}] := \bigcup_{\varepsilon \in \mathbb{F}^{\mathrm{sym}}_{\ell}} \Sigma^{\mathrm{odd}}(\varepsilon) \text{ and } \Sigma^{\mathrm{even}}[\mathbb{F}^{\mathrm{sym}}_{\ell}] := \bigcup_{\varepsilon \in \mathbb{F}^{\mathrm{sym}}_{\ell}} \Sigma^{\mathrm{even}}(\varepsilon).$

The odd-mode and even-mode minimal decay rates are

$$\beta_{\min}^{\text{odd}}(\alpha) = \min_{\substack{\operatorname{Re}\,\omega=\alpha\\\omega\in\Sigma^{\text{odd}}[\mathbb{F}_{\ell}^{\text{sym}}]}} |\operatorname{Im}\omega|, \qquad \beta_{\min}^{\text{even}}(\alpha) = \min_{\substack{\operatorname{Re}\,\omega=\alpha\\\omega\in\Sigma^{\text{even}}[\mathbb{F}_{\ell}^{\text{sym}}]}} |\operatorname{Im}\omega|;$$

the Pareto frontiers: $\operatorname{Pa}_{\operatorname{Dr}}^{\operatorname{odd}(\operatorname{even})} := \{ \alpha - i\beta_{\min}^{\operatorname{odd}(\operatorname{even})}(\alpha) : \alpha \in \operatorname{Re} \Sigma^{\operatorname{odd}(\operatorname{even})}[\mathbb{F}_{\ell}^{\operatorname{sym}}] \}.$

 $\Sigma^{\text{odd}}[\mathbb{F}_{\ell}^{\text{sym}}]$ (i.e., y(0) = 0) and Pa_{Dr}^{odd} in the domain \mathcal{D} ; $\epsilon_1 = 90, \epsilon_2 = 110$ (low contrast), $\epsilon_{\infty} = 1$; drawing based on Euler-Lagrange bang-bang eigenpr. + shooting meth. in [-1, 0] (K., Logachova, Verbytskyi '17).

$$\begin{split} -y''(s) &= \omega^2 \varepsilon(s) y(s), \qquad -\mathrm{i} y'(\pm \ell) / \omega = \pm \sqrt{\epsilon_{\infty}} y(\pm \ell) \\ \mathbb{F}_{\ell}^{\mathrm{sym}} &:= \{ \varepsilon(s) \in L_{\mathbb{R}}^{\infty}(-\ell, \ell) \ : \ \epsilon_1 \leqslant \varepsilon(s) = \varepsilon(-s) \leqslant \epsilon_2 \text{ a.e.} \} \end{split}$$

The closed sets of odd-mode and even-mode achievable resonances, $\Sigma^{\mathrm{odd}}[\mathbb{F}^{\mathrm{sym}}_{\ell}] := \bigcup_{\varepsilon \in \mathbb{F}^{\mathrm{sym}}_{\ell}} \Sigma^{\mathrm{odd}}(\varepsilon) \text{ and } \Sigma^{\mathrm{even}}[\mathbb{F}^{\mathrm{sym}}_{\ell}] := \bigcup_{\varepsilon \in \mathbb{F}^{\mathrm{sym}}_{\ell}} \Sigma^{\mathrm{even}}(\varepsilon).$

The odd-mode and even-mode minimal decay rates are

$$\beta_{\min}^{\text{odd}}(\alpha) = \min_{\substack{\operatorname{Re}\,\omega=\alpha\\\omega\in\Sigma^{\text{odd}}[\mathbb{F}_{\ell}^{\text{sym}}]}} |\operatorname{Im}\omega|, \qquad \beta_{\min}^{\text{even}}(\alpha) = \min_{\substack{\operatorname{Re}\,\omega=\alpha\\\omega\in\Sigma^{\text{even}}[\mathbb{F}_{\ell}^{\text{sym}}]}} |\operatorname{Im}\omega|;$$

the Pareto frontiers: $Pa_{Dr}^{odd(even)} := \{ \alpha - i\beta_{\min}^{odd(even)}(\alpha) : \alpha \in \operatorname{Re} \Sigma^{odd(even)}[\mathbb{F}_{\ell}^{sym}] \}.$

 $\Sigma^{\text{odd}}[\mathbb{F}_{\ell}^{\text{sym}}]$ (i.e., y(0) = 0) and Pa_{Dr}^{odd} in the domain \mathcal{D} ; $\epsilon_1 = 90, \epsilon_2 = 110$ (low contrast), $\epsilon_{\infty} = 1$; drawing based on Euler-Lagrange bang-bang eigenpr. + shooting meth. in [-1, 0] (K., Logachova, Verbytskyi '17).

$$\begin{split} -y''(s) &= \omega^2 \varepsilon(s) y(s), \qquad -\mathrm{i} y'(\pm \ell) / \omega = \pm \sqrt{\epsilon_{\infty}} y(\pm \ell) \\ \mathbb{F}_{\ell}^{\mathrm{sym}} &:= \{ \varepsilon(s) \in L_{\mathbb{R}}^{\infty}(-\ell, \ell) \ : \ \epsilon_1 \leqslant \varepsilon(s) = \varepsilon(-s) \leqslant \epsilon_2 \text{ a.e.} \} \end{split}$$

The closed sets of odd-mode and even-mode achievable resonances. $\Sigma^{\mathrm{odd}}[\mathbb{F}_{\ell}^{\mathrm{sym}}] := \bigcup_{\varepsilon \in \mathbb{F}_{\ell}^{\mathrm{sym}}} \Sigma^{\mathrm{odd}}(\varepsilon) \text{ and } \Sigma^{\mathrm{even}}[\mathbb{F}_{\ell}^{\mathrm{sym}}] := \bigcup_{\varepsilon \in \mathbb{F}_{\ell}^{\mathrm{sym}}} \Sigma^{\mathrm{even}}(\varepsilon).$

The odd-mode and even-mode minimal decay rates are

$$\beta_{\min}^{\text{odd}}(\alpha) = \min_{\substack{\operatorname{Re}\,\omega = \alpha\\\omega \in \Sigma^{\text{odd}}[\mathbb{F}_{\ell}^{\text{sym}}]}} |\operatorname{Im}\omega|, \qquad \beta_{\min}^{\text{even}}(\alpha) = \min_{\substack{\operatorname{Re}\,\omega = \alpha\\\omega \in \Sigma^{\text{even}}[\mathbb{F}_{\ell}^{\text{sym}}]}} |\operatorname{Im}\omega|;$$

the Pareto frontiers: $\operatorname{Pa}_{\operatorname{Dr}}^{\operatorname{odd}(\operatorname{even})} := \{ \alpha - i\beta_{\min}^{\operatorname{odd}(\operatorname{even})}(\alpha) : \alpha \in \operatorname{Re} \Sigma^{\operatorname{odd}(\operatorname{even})}[\mathbb{F}_{\ell}^{\operatorname{sym}}] \}.$

 $\sum_{k_{1},\dots,k_{n}} \sum_{k_{n},\dots,k_{n}} \sum_{k_{n},\dots$ + shooting meth. in [-1, 0] (K., Logachova, Verbytskyi '17).

Theorem (K. '12-'13). Let $\omega = \alpha - i\beta_{\min}(\alpha)$ and $\omega \in \Sigma(\varepsilon)$ for $\varepsilon \in \mathbb{F}_{s_-,s_+}$. Then: **B** optimal eigenmode $y \in W^{2,\infty}_{\mathbb{C}}[s_-,s_+]$ of $\varepsilon(\cdot)$ s.t.

$$\begin{split} -y'' &= \omega^2 y [\epsilon_1 + (\epsilon_2 - \epsilon_1) \chi_{\mathbb{C}_+}(y^2)], \\ -\mathrm{i} y'(s_{\pm})/\omega &= \pm \sqrt{\epsilon_{\infty}} y(s_{\pm}), \end{split}$$

and additionally $\varepsilon = \epsilon_1 + (\epsilon_2 - \epsilon_1)\chi_{\mathbb{C}_+}(y^2).$ Here $\chi_{\mathbb{C}_+}(\zeta) := \begin{cases} 1 & \text{if Im } \zeta > 0, \\ 0 & \text{if Im } \zeta \leqslant 0. \end{cases}$

Theorem (K. '12-'13). Let $\omega = \alpha - i\beta_{\min}(\alpha)$ and $\omega \in \Sigma(\varepsilon)$ for $\varepsilon \in \mathbb{F}_{s_-,s_+}$. Then: **B** optimal eigenmode $y \in W^{2,\infty}_{\mathbb{C}}[s_-,s_+]$ of $\varepsilon(\cdot)$ s.t.

$$\begin{split} -y'' &= \omega^2 y [\epsilon_1 + (\epsilon_2 - \epsilon_1) \chi_{\mathbb{C}_+} (y^2)], \\ -\mathrm{i} y'(s_{\pm}) / \omega &= \pm \sqrt{\epsilon_{\infty}} y(s_{\pm}), \end{split}$$

and additionally $\varepsilon = \epsilon_1 + (\epsilon_2 - \epsilon_1)\chi_{\mathbb{C}_+}(y^2).$ Here $\chi_{\mathbb{C}_+}(\zeta) := \begin{cases} 1 & \text{if Im } \zeta > 0, \\ 0 & \text{if Im } \zeta \leqslant 0. \end{cases}$

Theorem (K. '12-'13). Let $\omega = \alpha - i\beta_{\min}(\alpha)$ and $\omega \in \Sigma(\varepsilon)$ for $\varepsilon \in \mathbb{F}_{s_-,s_+}$. Then: **B** optimal eigenmode $y \in W^{2,\infty}_{\mathbb{C}}[s_-,s_+]$ of $\varepsilon(\cdot)$ s.t.

$$-y'' = \omega^2 y[\epsilon_1 + (\epsilon_2 - \epsilon_1)\chi_{\mathbb{C}_+}(y^2)],$$

$$-iy'(s_{\pm})/\omega = \pm \sqrt{\epsilon_{\infty}} y(s_{\pm}),$$

and additionally $\varepsilon = \epsilon_1 + (\epsilon_2 - \epsilon_1)\chi_{\mathbb{C}_+}(y^2).$ Here $\chi_{\mathbb{C}_+}(\zeta) := \begin{cases} 1 & \text{if Im } \zeta > 0, \\ 0 & \text{if Im } \zeta \leqslant 0. \end{cases}$

Theorem (K. '12-'13). Let $\omega = \alpha - i\beta_{\min}(\alpha)$ and $\omega \in \Sigma(\varepsilon)$ for $\varepsilon \in \mathbb{F}_{s_-,s_+}$. Then: **B** optimal eigenmode $y \in W^{2,\infty}_{\mathbb{C}}[s_-,s_+]$ of $\varepsilon(\cdot)$ s.t.

$$-y'' = \omega^2 y[\epsilon_1 + (\epsilon_2 - \epsilon_1)\chi_{\mathbb{C}_+}(y^2)],$$

$$-iy'(s_{\pm})/\omega = \pm \sqrt{\epsilon_{\infty}} y(s_{\pm}),$$

and additionally $\varepsilon = \epsilon_1 + (\epsilon_2 - \epsilon_1)\chi_{\mathbb{C}_+}(y^2).$ Here $\chi_{\mathbb{C}_+}(\zeta) := \begin{cases} 1 & \text{if Im } \zeta > 0, \\ 0 & \text{if Im } \zeta \leqslant 0. \end{cases}$

Computation of nonlinear eigenvalues by the shooting from $iy'(-1)/\omega = \sqrt{\epsilon_{\infty}}y(-1)$ to y(0) = 0 $\epsilon_1 = 90, \epsilon_2 = 110, \epsilon_{\infty} = 1$ (K., Logachova, Verbytskyi '17).

This produces the Pareto optimal frontier $Pa_{Dr}^{odd} = \{ \alpha - i\beta_{min}^{odd}(\alpha) : \alpha \in \operatorname{Re} \Sigma^{odd}(\mathbb{F}_{\ell}^{sym}) \}$

Computation of nonlinear eigenvalues by the shooting from $iy'(-1)/\omega = \sqrt{\epsilon_{\infty}}y(-1)$ to y(0) = 0 $\epsilon_1 = 90, \epsilon_2 = 110, \epsilon_{\infty} = 1$ (K., Logachova, Verbytskyi '17).

This produces the Pareto optimal frontier

 $\operatorname{Pa_{Dr}^{odd}} = \{ \alpha - i\beta_{\min}^{odd}(\alpha) : \alpha \in \operatorname{Re} \Sigma^{odd}(\mathbb{F}_{\ell}^{\operatorname{sym}}) \}.$

19/41

The general scheme of the method:

- An extremal form of Lagrange duality produces an optimal control (OC) problem on the Riemann sphere C = C ∪ {∞} (the minimum-time problem).
 A resonance ω ∈ C is fixed.
 OC-Problem: find an admissible resonator ε(·) with minimal length L = s₊ − s₋.
- OC-Problem is equivalent to the Pareto optimization problem no.2.
 Problem 2. Pareto minimization of the modulus |ω| (for fixed L).
 The equivalence follows from scaling of Maxwell/string equations.
- The Hamilton-Jacobi-Bellman (HJB) equation for the (backward) value function $V(x) := T_{\omega}^{\min}(x, \mathfrak{n}_{\infty})$:

$$0 = V(\mathfrak{n}_{\infty}), \quad 0 = 1 - \nabla_{i\omega(x^2 - (\epsilon_2 + \epsilon_1)/2)} V(x) - \frac{\epsilon_2 - \epsilon_1}{2} |\nabla_{i\omega} V(x)|,$$

where $\nabla_z V(x) := \lim_{\substack{\zeta \to 0 \\ \zeta \in \mathbb{R}}} \frac{V(x+\zeta z) - V(x)}{\zeta}$ is the deriv. in the direct, $z \in \mathbb{C} = \mathbb{R}^2$.

- The uniqueness of a proximal solution for the HJB-equation follows from the general theory of HJB-eqs on manifolds (Chryssochoos, Vinter '03).
- The case ε₁ < ε_∞ < ε₂: Locally uniform in ω ∈ C₄ small-time local controllability ⇒ Continuity of the value function on its domain.

The general scheme of the method:

- An extremal form of Lagrange duality produces an optimal control (OC) problem on the Riemann sphere Ĉ = C ∪ {∞} (the minimum-time problem).
 A resonance ω ∈ C_− is fixed.
 OC-Problem: find an admissible resonator ε(·) with minimal length L = s₊ − s_−.
- OC-Problem is equivalent to the Pareto optimization problem no.2.
 Problem 2. Pareto minimization of the modulus |ω| (for fixed *L*).
 The equivalence follows from scaling of Maxwell/string equations.
- The Hamilton-Jacobi-Bellman (HJB) equation for the (backward) value function $V(x) := T_{\omega}^{\min}(x, \mathfrak{n}_{\infty})$:

 $0 = V(\mathfrak{n}_{\infty}), \quad 0 = 1 - \nabla_{i\omega(x^2 - (\epsilon_2 + \epsilon_1)/2)} V(x) - \frac{\epsilon_2 - \epsilon_1}{2} |\nabla_{i\omega} V(x)|,$

where $\nabla_z V(x) := \lim_{\substack{\zeta \to 0 \\ \zeta \in \mathbb{R}}} \frac{V(x+\zeta z)-V(x)}{\zeta}$ is the deriv. in the direct. $z \in \mathbb{C} = \mathbb{R}^2$.

- The uniqueness of a proximal solution for the HJB-equation follows from the general theory of HJB-eqs on manifolds (Chryssochoos, Vinter '03).
- The case $\epsilon_1 < \epsilon_{\infty} < \epsilon_2$: Locally uniform in $\omega \in \mathbb{C}_4$ small-time local controllability \Rightarrow Continuity of the value function on its domain.
- An extremal form of Lagrange duality produces an optimal control (OC) problem on the Riemann sphere Ĉ = C ∪ {∞} (the minimum-time problem).
 A resonance ω ∈ C_− is fixed.
 OC-Problem: find an admissible resonator ε(·) with minimal length L = s₊ − s_−.
- OC-Problem is equivalent to the Pareto optimization problem no.2. Problem 2. Pareto minimization of the modulus $|\omega|$ (for fixed *L*). The equivalence follows from scaling of Maxwell/string equations.
- The Hamilton-Jacobi-Bellman (HJB) equation for the (backward) value function $V(x) := T_{\omega}^{\min}(x, \mathfrak{n}_{\infty})$:
 - $0 = V(\mathfrak{n}_{\infty}), \quad 0 = 1 \nabla_{i\omega(x^2 (\epsilon_2 + \epsilon_1)/2)} V(x) \frac{\epsilon_2 \epsilon_1}{2} |\nabla_{i\omega} V(x)|,$

where $\nabla_z V(x) := \lim_{\substack{\zeta \to 0 \\ \zeta \in \mathbb{R}}} \frac{V(x+\zeta z)-V(x)}{\zeta}$ is the deriv. in the direct. $z \in \mathbb{C} = \mathbb{R}^2$.

- The uniqueness of a proximal solution for the HJB-equation follows from the general theory of HJB-eqs on manifolds (Chryssochoos, Vinter '03).
- The case ε₁ < ε_∞ < ε₂: Locally uniform in ω ∈ C₄ small-time local controllability ⇒ Continuity of the value function on its domain.

- An extremal form of Lagrange duality produces an optimal control (OC) problem on the Riemann sphere Ĉ = C ∪ {∞} (the minimum-time problem).
 A resonance ω ∈ C_− is fixed.
 OC-Problem: find an admissible resonator ε(·) with minimal length L = s₊ − s_−.
- OC-Problem is equivalent to the Pareto optimization problem no.2. Problem 2. Pareto minimization of the modulus $|\omega|$ (for fixed *L*). The equivalence follows from scaling of Maxwell/string equations.
- The Hamilton-Jacobi-Bellman (HJB) equation for the (backward) value function $V(x) := T_{\omega}^{\min}(x, \mathfrak{n}_{\infty})$:
 - $0 = V(\mathfrak{n}_{\infty}), \quad 0 = 1 \nabla_{i\omega(x^2 (\epsilon_2 + \epsilon_1)/2)} V(x) \frac{\epsilon_2 \epsilon_1}{2} |\nabla_{i\omega} V(x)|,$

where $\nabla_z V(x) := \lim_{\substack{\zeta \to 0 \\ \zeta \in \mathbb{R}}} \frac{V(x+\zeta z)-V(x)}{\zeta}$ is the deriv. in the direct. $z \in \mathbb{C} = \mathbb{R}^2$.

- The uniqueness of a proximal solution for the HJB-equation follows from the general theory of HJB-eqs on manifolds (Chryssochoos, Vinter '03).
- The case ε₁ < ε_∞ < ε₂: Locally uniform in ω ∈ C₄ small-time local controllability ⇒ Continuity of the value function on its domain.

- An extremal form of Lagrange duality produces an optimal control (OC) problem on the Riemann sphere Ĉ = C ∪ {∞} (the minimum-time problem).
 A resonance ω ∈ C_− is fixed.
 OC-Problem: find an admissible resonator ε(·) with minimal length L = s₊ − s_−.
- OC-Problem is equivalent to the Pareto optimization problem no.2. Problem 2. Pareto minimization of the modulus $|\omega|$ (for fixed *L*). The equivalence follows from scaling of Maxwell/string equations.
- The Hamilton-Jacobi-Bellman (HJB) equation for the (backward) value function $V(x) := T_{\omega}^{\min}(x, \mathfrak{n}_{\infty})$:
 - $0 = V(\mathfrak{n}_{\infty}), \quad 0 = 1 \nabla_{i\omega(x^2 (\epsilon_2 + \epsilon_1)/2)} V(x) \frac{\epsilon_2 \epsilon_1}{2} |\nabla_{i\omega} V(x)|,$

where $\nabla_z V(x) := \lim_{\substack{\zeta \to 0 \\ \zeta \in \mathbb{R}}} \frac{V(x+\zeta z)-V(x)}{\zeta}$ is the deriv. in the direct. $z \in \mathbb{C} = \mathbb{R}^2$.

- The uniqueness of a proximal solution for the HJB-equation follows from the general theory of HJB-eqs on manifolds (Chryssochoos, Vinter '03).
- The case $\epsilon_1 < \epsilon_{\infty} < \epsilon_2$: Locally uniform in $\omega \in \mathbb{C}_4$ small-time local controllability \Rightarrow Continuity of the value function on its domain.

- An extremal form of Lagrange duality produces an optimal control (OC) problem on the Riemann sphere Ĉ = C ∪ {∞} (the minimum-time problem).
 A resonance ω ∈ C_− is fixed.
 OC-Problem: find an admissible resonator ε(·) with minimal length L = s₊ − s_−.
- OC-Problem is equivalent to the Pareto optimization problem no.2. Problem 2. Pareto minimization of the modulus $|\omega|$ (for fixed *L*). The equivalence follows from scaling of Maxwell/string equations.
- The Hamilton-Jacobi-Bellman (HJB) equation for the (backward) value function $V(x) := T_{\omega}^{\min}(x, \mathfrak{n}_{\infty})$:
 - $0 = V(\mathfrak{n}_{\infty}), \quad 0 = 1 \nabla_{i\omega(x^2 (\epsilon_2 + \epsilon_1)/2)} V(x) \frac{\epsilon_2 \epsilon_1}{2} |\nabla_{i\omega} V(x)|,$

where $\nabla_z V(x) := \lim_{\substack{\zeta \to 0 \\ \zeta \in \mathbb{R}}} \frac{V(x+\zeta z)-V(x)}{\zeta}$ is the deriv. in the direct. $z \in \mathbb{C} = \mathbb{R}^2$.

- The uniqueness of a proximal solution for the HJB-equation follows from the general theory of HJB-eqs on manifolds (Chryssochoos, Vinter '03).

(日)

- Maximum Principle (PMP) ⇒
 EL-eigenproblem + a special transversality condition.
- ▶ Extremal synthesis → a dictionary of possible extremal trajectories.
- If c₁ < c_∞ < c₂: complete reduction of Pareto opt. problem no.1 to Pareto opt. problem no.2.
- If ε_∞ = ε₁ or ε_∞ = ε₂, almost complete reduction:
 The Pareto frontier no.1 and at least one optimizer for each optimal ω can be found from the solution of the Pareto opt. problem no.2.
- The proof of reduction:
 extremal synthesis + locally uniform small-time local controllability
 + multi-parameter perturbations of ω.
- A special minimum-time shooting method provides effective computation of optimizers of Problem no.2 in the symmetric case.

- Maximum Principle (PMP) ⇒
 EL-eigenproblem + a special transversality condition.
- ► Extremal synthesis → a dictionary of possible extremal trajectories.
- If $\epsilon_1 < \epsilon_\infty < \epsilon_2$:

complete reduction of Pareto opt. problem no.1 to Pareto opt. problem no.2.

• If $\epsilon_{\infty} = \epsilon_1$ or $\epsilon_{\infty} = \epsilon_2$, almost complete reduction:

- The proof of reduction:
 extremal synthesis + locally uniform small-time local controllability
 + multi-parameter perturbations of ω.
- A special minimum-time shooting method provides effective computation of optimizers of Problem no.2 in the symmetric case.

- Maximum Principle (PMP) ⇒
 EL-eigenproblem + a special transversality condition.
- ► Extremal synthesis → a dictionary of possible extremal trajectories.
- If $\epsilon_{\infty} = \epsilon_1$ or $\epsilon_{\infty} = \epsilon_2$, almost complete reduction:

- The proof of reduction:
 extremal synthesis + locally uniform small-time local controllability
 + multi-parameter perturbations of ω.
- A special minimum-time shooting method provides effective computation of optimizers of Problem no.2 in the symmetric case.

- Maximum Principle (PMP) ⇒
 EL-eigenproblem + a special transversality condition.
- ► Extremal synthesis → a dictionary of possible extremal trajectories.
- If $\epsilon_1 < \epsilon_\infty < \epsilon_2$:

complete reduction of Pareto opt. problem no.1 to Pareto opt. problem no.2.

• If $\epsilon_{\infty} = \epsilon_1$ or $\epsilon_{\infty} = \epsilon_2$, almost complete reduction:

- The proof of reduction:
 extremal synthesis + locally uniform small-time local controllability
 + multi-parameter perturbations of ω.
- A special minimum-time shooting method provides effective computation of optimizers of Problem no.2 in the symmetric case.

- Maximum Principle (PMP) ⇒ EL-eigenproblem + a special transversality condition.
- ► Extremal synthesis → a dictionary of possible extremal trajectories.
- If $\epsilon_1 < \epsilon_\infty < \epsilon_2$:

complete reduction of Pareto opt. problem no.1 to Pareto opt. problem no.2.

• If $\epsilon_{\infty} = \epsilon_1$ or $\epsilon_{\infty} = \epsilon_2$, almost complete reduction:

- The proof of reduction:
 extremal synthesis + locally uniform small-time local controllability
 + multi-parameter perturbations of ω.
- A special minimum-time shooting method provides effective computation of optimizers of Problem no.2 in the symmetric case.

- Maximum Principle (PMP) ⇒ EL-eigenproblem + a special transversality condition.
- ► Extremal synthesis → a dictionary of possible extremal trajectories.
- If $\epsilon_1 < \epsilon_\infty < \epsilon_2$:

complete reduction of Pareto opt. problem no.1 to Pareto opt. problem no.2.

• If $\epsilon_{\infty} = \epsilon_1$ or $\epsilon_{\infty} = \epsilon_2$, almost complete reduction:

- The proof of reduction:
 extremal synthesis + locally uniform small-time local controllability
 + multi-parameter perturbations of ω.
- A special minimum-time shooting method provides effective computation of optimizers of Problem no.2 in the symmetric case.

Step 1. Minimization of resonator length for a fixed resonance $\omega \in \mathbb{C}_{-}$.

The family \mathbb{F} consists of $\varepsilon \in L^{\infty}(\mathbb{R})$ s.t. $\mathfrak{n}_1^2 \leq \varepsilon(s) \leq \mathfrak{n}_2^2$ and

there exist s_{\pm} s.t. $\varepsilon(s) \equiv \mathfrak{n}_{\infty}^2$ for $s \in \mathbb{R} \setminus [s_-, s_+]$,

here $\mathfrak{n}_j = (\epsilon_j)^{1/2}$ are refractive indices.

The effective length of the resonator ε is $L(\varepsilon) := s_{\pm}^{\varepsilon} - s_{-}^{\varepsilon}$, where $[s_{-}^{\varepsilon}, s_{\pm}^{\varepsilon}]$ is the shortest interval satisfying (1) (if $\varepsilon(\cdot) \equiv \mathfrak{n}_{\infty}^{2}$, we put $s_{\pm}^{\varepsilon} = 0$, and so $L(\varepsilon) = 0$).

Problem 2. $\underset{\substack{\varepsilon \in \mathbb{F} \\ k \in \Sigma(\varepsilon)}}{\operatorname{arg min} L(\varepsilon)}$, we denote the minimal length $L_{\min}(\omega)$.

The set $\Sigma(\varepsilon)$ is well defined since for $-y''(s) = \omega^2 \varepsilon(s) y(s)$ and $\varepsilon \in \mathbb{F}$:

$$\begin{split} -\mathrm{i}y'(s^{\varepsilon}_{\pm})/\omega &= \pm \mathfrak{n}_{\infty}y(s^{\varepsilon}_{\pm}) \qquad \text{can be replaced by} \\ -\mathrm{i}y'(s_{\pm})/\omega &= \pm \mathfrak{n}_{\infty}y(s_{\pm}) \qquad \text{with arbitrary } \pm s_{\pm} > \pm s^{\varepsilon}_{\pm} \text{ (radiation conditions).} \end{split}$$

Step 1. Minimization of resonator length for a fixed resonance $\omega \in \mathbb{C}_{-}$.

The family \mathbb{F} consists of $\varepsilon \in L^{\infty}(\mathbb{R})$ s.t. $\mathfrak{n}_1^2 \leqslant \varepsilon(s) \leqslant \mathfrak{n}_2^2$ and

there exist s_{\pm} s.t. $\varepsilon(s) \equiv \mathfrak{n}_{\infty}^2$ for $s \in \mathbb{R} \setminus [s_{-}, s_{+}]$,

here $n_j = (\epsilon_j)^{1/2}$ are refractive indices.

The effective length of the resonator ε is $L(\varepsilon) := s_{+}^{\varepsilon} - s_{-}^{\varepsilon}$, where $[s_{-}^{\varepsilon}, s_{+}^{\varepsilon}]$ is the shortest interval satisfying (1) (if $\varepsilon(\cdot) \equiv \mathfrak{n}_{\infty}^{2}$, we put $s_{\pm}^{\varepsilon} = 0$, and so $L(\varepsilon) = 0$).

Problem 2. $\underset{\substack{\varepsilon \in \mathbb{F} \\ k \in \Sigma(\varepsilon)}}{\operatorname{arg min} L(\varepsilon)}$, we denote the minimal length $L_{\min}(\omega)$.

The set $\Sigma(\varepsilon)$ is well defined since for $-y''(s) = \omega^2 \varepsilon(s) y(s)$ and $\varepsilon \in \mathbb{F}$:

$$\begin{split} -\mathrm{i}y'(s^{\varepsilon}_{\pm})/\omega &= \pm \mathfrak{n}_{\infty}y(s^{\varepsilon}_{\pm}) \qquad \text{can be replaced by} \\ -\mathrm{i}y'(s_{\pm})/\omega &= \pm \mathfrak{n}_{\infty}y(s_{\pm}) \qquad \text{with arbitrary } \pm s_{\pm} > \pm s^{\varepsilon}_{\pm} \text{ (radiation conditions).} \end{split}$$

Step 1. Minimization of resonator length for a fixed resonance $\omega \in \mathbb{C}_{-}$.

The family \mathbb{F} consists of $\varepsilon \in L^{\infty}(\mathbb{R})$ s.t. $\mathfrak{n}_1^2 \leqslant \varepsilon(s) \leqslant \mathfrak{n}_2^2$ and

there exist
$$s_{\pm}$$
 s.t. $\varepsilon(s) \equiv \mathfrak{n}_{\infty}^2$ for $s \in \mathbb{R} \setminus [s_{-}, s_{+}]$, (1)

here $n_j = (\epsilon_j)^{1/2}$ are refractive indices.

The effective length of the resonator ε is $L(\varepsilon) := s_{+}^{\varepsilon} - s_{-}^{\varepsilon}$, where $[s_{-}^{\varepsilon}, s_{+}^{\varepsilon}]$ is the shortest interval satisfying (1) (if $\varepsilon(\cdot) \equiv \mathfrak{n}_{\infty}^{2}$, we put $s_{\pm}^{\varepsilon} = 0$, and so $L(\varepsilon) = 0$).

Problem 2. $\underset{\substack{\varepsilon \in \mathbb{F}\\ k \in \Sigma(\varepsilon)}}{\operatorname{arg\,min} L(\varepsilon)}$, we denote the minimal length $L_{\min}(\omega)$.

The set $\Sigma(\varepsilon)$ is well defined since for $-y''(s) = \omega^2 \varepsilon(s) y(s)$ and $\varepsilon \in \mathbb{F}$:

$$\begin{split} -\mathrm{i}y'(s^{\varepsilon}_{\pm})/\omega &= \pm\mathfrak{n}_{\infty}y(s^{\varepsilon}_{\pm}) \qquad \text{can be replaced by} \\ -\mathrm{i}y'(s_{\pm})/\omega &= \pm\mathfrak{n}_{\infty}y(s_{\pm}) \qquad \text{with arbitrary } \pm s_{\pm} > \pm s^{\varepsilon}_{\pm} \text{ (radiation conditions).} \end{split}$$

Step 1. Minimization of resonator length for a fixed resonance $\omega \in \mathbb{C}_{-}$.

The family \mathbb{F} consists of $\varepsilon \in L^{\infty}(\mathbb{R})$ s.t. $\mathfrak{n}_1^2 \leqslant \varepsilon(s) \leqslant \mathfrak{n}_2^2$ and

there exist
$$s_{\pm}$$
 s.t. $\varepsilon(s) \equiv \mathfrak{n}_{\infty}^2$ for $s \in \mathbb{R} \setminus [s_-, s_+]$, (1)

here $n_j = (\epsilon_j)^{1/2}$ are refractive indices.

The effective length of the resonator ε is $L(\varepsilon) := s_{+}^{\varepsilon} - s_{-}^{\varepsilon}$, where $[s_{-}^{\varepsilon}, s_{+}^{\varepsilon}]$ is the shortest interval satisfying (1) (if $\varepsilon(\cdot) \equiv \mathfrak{n}_{\infty}^{2}$, we put $s_{\pm}^{\varepsilon} = 0$, and so $L(\varepsilon) = 0$).

Problem 2. $\arg \min_{\substack{\varepsilon \in \mathbb{F} \\ k \in \Sigma(\varepsilon)}} L(\varepsilon)$, we denote the minimal length $L_{\min}(\omega)$.

The set $\Sigma(\varepsilon)$ is well defined since for $-y''(s) = \omega^2 \varepsilon(s) y(s)$ and $\varepsilon \in \mathbb{F}$:

$$\begin{split} -\mathrm{i}y'(s_{\pm}^{\varepsilon})/\omega &= \pm\mathfrak{n}_{\infty}y(s_{\pm}^{\varepsilon}) \qquad \text{can be replaced by} \\ -\mathrm{i}y'(s_{\pm})/\omega &= \pm\mathfrak{n}_{\infty}y(s_{\pm}) \qquad \text{with arbitrary } \pm s_{\pm} > \pm s_{\pm}^{\varepsilon} \text{ (radiation conditions).} \end{split}$$

Step 1. Minimization of resonator length for a fixed resonance $\omega \in \mathbb{C}_{-}$.

Symmetric version: $\mathbb{F}^{\text{sym}} := \{ \varepsilon \in \mathbb{F} : \varepsilon(s) = \varepsilon(-s) \text{ a.e. on } \mathbb{R} \},\$

$\arg\min L(\varepsilon),$	$\arg\min L(\varepsilon),$
$\varepsilon \in \mathbb{F}^{sym}$	$\varepsilon \in \mathbb{F}^{sym}$
$\omega \in \Sigma^{\text{odd}}(\varepsilon)$	$\omega \in \Sigma^{\text{even}}(\varepsilon)$

the minimal lengths $L_{\min}^{\text{odd}}(\omega)$ and $L_{\min}^{\text{even}}(\omega)$.

Idea. Consider *s* as time. Find the minimal time $T_k^{\min}(-\mathfrak{n}_{\infty},\mathfrak{n}_{\infty}) = s_+ - s_$ needed to get from $\frac{y'(s_-)}{i\omega y(s_-)} = -\mathfrak{n}_{\infty}$ (initial point) to $\frac{y'(s_+)}{i\omega y(s_+)} = \mathfrak{n}_{\infty} = \sqrt{\epsilon_{\infty}}$ (target).

The family of (feasible) controls $\mathbb{F}_{s_{-}} := \{ \varepsilon \in L^{\infty}(s_{-}, +\infty) : \mathfrak{n}_{1}^{2} \leq \varepsilon(s) \leq \mathfrak{n}_{2}^{2} \}.$

Using Riccati transform $x = \frac{y'}{i\omega y}$, we rewrite $-y''(s) = \omega^2 \varepsilon(s)y(s)$ as the control system

$$x' = \mathrm{i}\omega(-x^2 + \varepsilon)$$

in $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}.$

<ロ> < 部 > < き > < き > き の Q で 24/41

Step 2. Minimum time control reformulation.

Using Riccati transform
$$x = \frac{y'}{i\omega y}$$
, we rewrite $-y''(s) = \omega^2 \varepsilon(s)y(s)$ as
the control system
 $x' = i\omega(-x^2 + \varepsilon)$
in $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$.
Equivalence: $L_{\min}(\omega) = T_{\omega}^{\min}(-\mathfrak{n}_{\infty},\mathfrak{n}_{\infty}),$
 $L_{\min}^{\text{even}}(\omega) = T_{\omega}^{\min}(-\mathfrak{n}_{\infty},0) = T_{k}^{\min}(0,\mathfrak{n}_{\infty}),$
i.e., $x(s) = \infty$ corresponds to $y(s) = 0$.

Drawing based on a computed trajectory of the *x*-extremal and the optimizer $\varepsilon(\cdot)$ of the even-mode minimal length problem for $\omega = 1 - i$, $n_1 = 1$, $n_2 = n_{\infty} = 3.46$.

 $x(\tilde{b}_1)$

Seca

Step 2. Minimum time control reformulation.

Using Riccati transform
$$x = \frac{y'}{i\omega y}$$
, we rewrite $-y''(s) = \omega^2 \varepsilon(s)y(s)$ as
the control system
 $x' = i\omega(-x^2 + \varepsilon)$
in $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$.
Equivalence: $L_{\min}(\omega) = T_{\omega}^{\min}(-\mathfrak{n}_{\infty},\mathfrak{n}_{\infty}),$
 $L_{\min}^{\text{even}}(\omega) = T_{\omega}^{\min}(-\mathfrak{n}_{\infty},\mathfrak{n}) = T_{k}^{\min}(\mathfrak{n},\mathfrak{n}_{\infty}),$
i.e., $x(s) = \infty$ corresponds to $y(s) = 0$.

Drawing based on a computed trajectory of the *x*-extremal and the optimizer $\varepsilon(\cdot)$ of the even-mode minimal length problem for $\omega = 1 - i$, $n_1 = 1$, $n_2 = n_{\infty} = 3.46$.

Step 3. Pareto frontier of resonances of minimal $|\omega|$ for a given Arg k.

Let $\Sigma_{\eta-,\eta_+}^{s_-,s_+}(\varepsilon)$ be the set of eigenvalues of $-y''(s) = \omega^2 \varepsilon(s) y(s), \qquad \frac{y'(s_{\mp})}{i\omega y(s_{\mp})} = \eta_{\mp}, \qquad \eta_{\mp} \in \widehat{\mathbb{C}}, \qquad \omega = \rho e^{i\gamma}.$

Problem 2'. Minimization of $|\omega|$ for a given achievable complex argument $\gamma = \operatorname{Arg} \omega \in (-\pi/2, 0)$ (the interval $[s_-, s_+]$ is fixed).

Achievable eigenvalues: $\Sigma_{\eta_-,\eta_+}^{s_-,s_+}[\mathbb{F}_{s_-}] := \bigcup_{\varepsilon \in \mathbb{F}_{s_-}} \Sigma_{\eta_-,\eta_+}^{s_-,s_+}(\varepsilon).$

The minimal modulus for an argument $\gamma \in (-\pi/2, 0)$

 $\rho_{\min}(\gamma) = \rho_{\min}(\gamma, \eta_{-}, \eta_{+}) := \inf\{|\omega| : \omega \in \Sigma_{\eta_{-}, \eta_{+}}^{s_{-}, s_{+}}[\mathbb{F}_{s_{-}}] \text{ and } \operatorname{Arg} \omega = \gamma\}.$

The Pareto frontier $\operatorname{Pa}_{\mathrm{mod}}^{\eta_-,\eta_+} := \{ e^{i\gamma} \rho_{\min}(\gamma) \ : \ \gamma \in \operatorname{Arg} \Sigma_{\eta_-,\eta_+}^{s_-,s_+} [\mathbb{F}_{s_-}] \}$

Theorem (equivalence of Pr.2 and Pr.2'). $T_{\min}^{\min}(n_{-}, n_{+}) = \frac{(s_{+} - s_{-})}{2} \rho_{\min}(\gamma, n_{-}, n_{+})$

Step 3. Pareto frontier of resonances of minimal $|\omega|$ for a given Arg k.

Let $\Sigma_{\eta_-,\eta_+}^{s_-,s_+}(\varepsilon)$ be the set of eigenvalues of $-y''(s) = \omega^2 \varepsilon(s) y(s), \qquad \frac{y'(s_{\mp})}{i\omega y(s_{\mp})} = \eta_{\mp}, \qquad \eta_{\mp} \in \widehat{\mathbb{C}}, \qquad \omega = \rho e^{i\gamma}.$

Problem 2'. Minimization of $|\omega|$ for a given achievable complex argument $\gamma = \operatorname{Arg} \omega \in (-\pi/2, 0)$ (the interval $[s_-, s_+]$ is fixed).

Achievable eigenvalues: $\Sigma_{\eta_-,\eta_+}^{s_-,s_+}[\mathbb{F}_{s_-}] := \bigcup_{\varepsilon \in \mathbb{F}_{s_-}} \Sigma_{\eta_-,\eta_+}^{s_-,s_+}(\varepsilon).$

The minimal modulus for an argument $\gamma \in (-\pi/2, 0)$

 $\rho_{\min}(\gamma) = \rho_{\min}(\gamma, \eta_{-}, \eta_{+}) := \inf\{|\omega| : \omega \in \Sigma^{s_{-}, s_{+}}_{\eta_{-}, \eta_{+}}[\mathbb{F}_{s_{-}}] \text{ and } \operatorname{Arg} \omega = \gamma\}.$

The Pareto frontier $\operatorname{Pa}_{\operatorname{mod}}^{\eta_-,\eta_+} := \{ e^{i\gamma} \rho_{\min}(\gamma) : \gamma \in \operatorname{Arg} \Sigma_{\eta_-,\eta_+}^{s_{-,s_+}}[\mathbb{F}_{s_-}] \}.$

Theorem (equivalence of Pr.2 and Pr.2'). $T_{\omega}^{\min}(\eta_{-}, \eta_{+}) = \frac{(s_{+}-s_{-})}{|\omega|} \rho_{\min}(\gamma, \eta_{-}, \eta_{+})$

Step 3. Pareto frontier of resonances of minimal $|\omega|$ for a given Arg k.

Let $\Sigma_{\eta_-,\eta_+}^{s_-,s_+}(\varepsilon)$ be the set of eigenvalues of $-y''(s) = \omega^2 \varepsilon(s) y(s), \qquad \frac{y'(s_{\mp})}{i\omega y(s_{\mp})} = \eta_{\mp}, \qquad \eta_{\mp} \in \widehat{\mathbb{C}}, \qquad \omega = \rho e^{i\gamma}.$

Problem 2'. Minimization of $|\omega|$ for a given achievable complex argument $\gamma = \operatorname{Arg} \omega \in (-\pi/2, 0)$ (the interval $[s_-, s_+]$ is fixed).

Achievable eigenvalues: $\Sigma_{\eta_-,\eta_+}^{s_-,s_+}[\mathbb{F}_{s_-}] := \bigcup_{\varepsilon \in \mathbb{F}_{s_-}} \Sigma_{\eta_-,\eta_+}^{s_-,s_+}(\varepsilon).$

The minimal modulus for an argument $\gamma \in (-\pi/2, 0)$

 $\rho_{\min}(\gamma) = \rho_{\min}(\gamma, \eta_{-}, \eta_{+}) := \inf\{|\omega| : \omega \in \Sigma^{s_{-}, s_{+}}_{\eta_{-}, \eta_{+}}[\mathbb{F}_{s_{-}}] \text{ and } \operatorname{Arg} \omega = \gamma\}.$

The Pareto frontier $\operatorname{Pa}_{\operatorname{mod}}^{\eta_-,\eta_+} := \{ e^{i\gamma} \rho_{\min}(\gamma) : \gamma \in \operatorname{Arg} \Sigma_{\eta_-,\eta_+}^{s_-,s_+}[\mathbb{F}_{s_-}] \}.$

Theorem (equivalence of Pr.2 and Pr.2'). $T_{\omega}^{\min}(\eta_{-}, \eta_{+}) = \frac{(s_{+}-s_{-})}{|\omega|} \rho_{\min}(\gamma, \eta_{-}, \eta_{+}).$

Proof. The natural scaling of eigenproblem:

$$\text{if} \quad \omega \in \Sigma^{s_-,s_+}_{\eta_-,\eta_+}(\varepsilon) \quad \text{and} \quad \widetilde{\varepsilon}(s) = \varepsilon(\tau s), \quad \text{then} \quad \tau \omega \in \Sigma^{\tau^{-1}s_-, \tau^{-1}s_+}_{\eta_-, \eta_+}(\widetilde{\varepsilon}).$$

The Hamilton-Jacobi-Bellman equation for the minimum-time function.

The Hamilton-Jacobi-Bellman equation for $V(x) := T_{\omega}^{\min}(x, \mathfrak{n}_{\infty})$:

$$0 = 1 - \max\{-\nabla_{f(x,\epsilon)}V(x) : \epsilon = \epsilon_j, \ j = 1, 2\}$$

where $\nabla_z V(x) := \lim_{\substack{\zeta \to 0 \\ \zeta \in \mathbb{R}}} \frac{V(x+\zeta z)-V(x)}{\zeta}$ is the deriv. in the direct. $z \in \mathbb{C} = \mathbb{R}^2$.

The HJB equation can be written as the boundary value problem

$$0 = V(\mathfrak{n}_{\infty}), \quad 0 = 1 - \nabla_{\mathrm{i}\omega(x^2 - (\epsilon_2 + \epsilon_1)/2)} V(x) - \frac{\epsilon_2 - \epsilon_1}{2} |\nabla_{\mathrm{i}\omega} V(x)|,$$

+ an additional condition at $x = \infty$.

Maximum principle.

Maximum principle \Rightarrow E-L eigenpr. + an additional constraint on switch points.

$$\begin{split} -y'' &= \omega^2 \ y \ [\epsilon_1 + (\epsilon_2 - \epsilon_1) \chi_{\mathbb{C}_+} \left(y^2 \right)], \\ &- \mathrm{i} y'(s_{\pm}) / \omega = \pm \sqrt{\epsilon_{\infty}} \ y(s_{\pm}), \end{split}$$

Here $\chi_{\mathbb{C}_+} \left(\zeta \right) &:= \begin{cases} 1 & \text{if Im } \zeta > 0, \\ 0 & \text{if Im } \zeta \leqslant 0. \end{cases}$

 $\exists \lambda_0 \ge 0 \quad \text{s.t.} \quad \operatorname{Im}(\varepsilon(s)y^2(s) + \omega^{-2}(y'(s))^2) = \lambda_0 \quad \text{for all } s \in [s_-, s_+].$

Maximum principle.

Maximum principle \Rightarrow E-L eigenpr. + an additional constraint on switch points.

$$\begin{split} -y'' &= \omega^2 \ y \ [\epsilon_1 + (\epsilon_2 - \epsilon_1) \chi_{\mathbb{C}_+} (y^2)], \\ &- \mathrm{i} y'(s_{\pm}) / \omega = \pm \sqrt{\epsilon_{\infty}} \ y(s_{\pm}), \end{split}$$

Here $\chi_{\mathbb{C}_+} (\zeta) &:= \begin{cases} 1 & \text{if } \mathrm{Im} \ \zeta > 0, \\ 0 & \text{if } \mathrm{Im} \ \zeta \leqslant 0. \end{cases}$
 $\exists \lambda_0 \geq 0 \quad \text{s.t.} \quad \mathrm{Im}(\varepsilon(s) y^2(s) + \omega^{-2} (y'(s))^2) = \lambda_0 \quad \text{for all } s \in [s_-, s_+]. \end{split}$

・ロット・「開マ・「開マ・「日マ

29/41

Extremal synthesis. Part 1.

Extremal synthesis. Part 2.

Extremal synthesis. Part 3.

$$[-\mathfrak{n}_{2},-\mathfrak{n}_{1}) \xrightarrow{4} (-\mathfrak{n}_{2},0) \xrightarrow{3} \left[\xrightarrow{3} (-\infty,-\mathfrak{n}_{1}) \xrightarrow{4} (-\mathfrak{n}_{2},0) \xrightarrow{4} \right]_{\{\infty\}}^{m_{1}}$$

$$\begin{split} &(-\mathfrak{n}_{2},-\mathfrak{n}_{1}) \left[\stackrel{3}{+} (-\infty,-\mathfrak{n}_{2}) \stackrel{4}{-} (-\mathfrak{n}_{1},0) \right]^{m_{1}} \stackrel{3}{+} \mathfrak{L}_{0} \stackrel{2}{+} \mathfrak{i}\mathbb{R}_{+} \left[\stackrel{1}{-} (\mathfrak{n}_{2},+\infty) \stackrel{6}{+} (0,\mathfrak{n}_{1}) \right]^{m_{2}} \stackrel{1}{-} (\mathfrak{n}_{1},\mathfrak{n}_{2}); \\ &(-\mathfrak{n}_{2},-\mathfrak{n}_{1}) \left[\stackrel{3}{+} (-\infty,-\mathfrak{n}_{2}) \stackrel{4}{-} (-\mathfrak{n}_{1},0) \right]^{m_{1}} \stackrel{3}{+} \mathfrak{L}_{0} \stackrel{2}{+} \mathfrak{i}\mathbb{R}_{+} \left[\stackrel{1}{-} (\mathfrak{n}_{2},+\infty) \stackrel{6}{+} (0,\mathfrak{n}_{1}) \right]^{m_{2}} \stackrel{1}{-} (\mathfrak{n}_{2},+\infty) \stackrel{6}{+} (\mathfrak{n}_{1},\mathfrak{n}_{2}); \\ &[-\mathfrak{n}_{2},-\mathfrak{n}_{1}) \left[\stackrel{4}{-} (-\mathfrak{n}_{1},0) \stackrel{3}{+} (-\infty,-\mathfrak{n}_{2}) \right]^{m_{1}} \stackrel{4}{-} (-\mathfrak{n}_{1},0) \stackrel{3}{+} \mathfrak{L}_{0} \stackrel{2}{+} \mathfrak{i}\mathbb{R}_{+} \left[\stackrel{1}{-} (\mathfrak{n}_{2},+\infty) \stackrel{6}{+} (0,\mathfrak{n}_{1}) \right]^{m_{2}} \stackrel{1}{-} (\mathfrak{n}_{1},\mathfrak{n}_{2}); \\ &[-\mathfrak{n}_{2},-\mathfrak{n}_{1}) \left[\stackrel{4}{-} (-\mathfrak{n}_{1},0) \stackrel{3}{+} (-\infty,-\mathfrak{n}_{2}) \right]^{m_{1}} \stackrel{4}{-} (-\mathfrak{n}_{1},0) \stackrel{3}{+} \mathfrak{L}_{0} \stackrel{2}{+} \mathfrak{i}\mathbb{R}_{+} \left[\stackrel{1}{-} (\mathfrak{n}_{2},+\infty) \stackrel{6}{+} (0,\mathfrak{n}_{1}) \right]^{m_{2}} \stackrel{1}{-} (\mathfrak{n}_{2},+\infty) \stackrel{6}{+} (\mathfrak{n}_{1},\mathfrak{n}_{2}); \end{split}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ つへの

32/41

Extremal synthesis. Part 4.

33/41

Minimum-time shooting to a no-return line.

(a) The computed parts of Pareto frontiers of even-mode resonances and odd-mode resonances of minimal modulus for $\epsilon_1 = \epsilon_{\infty} = 1$, $\epsilon_2 = 11.97$, and $\ell = 0.1243 \cdot 10^{-6}$.

(b) The drawing of the set of achievable odd-mode resonances. The line marked '---' shows the corresponding Pareto frontier of minimal decay. It is proved analytically that $\omega_0 = \alpha_0 - i\beta_0 = e^{\gamma_0}\rho_{\min}(\gamma_0)$ is Pareto optimal and that there exists a jump of $\rho_{\min}(\gamma)$ at this point.

Optimal symmetric structures.

Layers' widths for (a) the odd-mode and (b) the even-mode optimal resonators for $\omega_1 = 3.653 \cdot 10^6 - i \cdot 3.653 \cdot 10^4$.

Q = 50, the wavelength in vacuum is $\lambda_1 = 1720$ nm (infrared range).

The optimal odd-mode resonator has $L \approx 1.389359403 \ \mu m$ and N = 7 layers.

The shortest even-mode resonator has $L \approx 1.5043572352 \ \mu m$ and N = 11.

Optimal symmetric structures, high quality-factor Q.

Much higher values of Q, but the same frequency $\operatorname{Re}\omega$, the right half:

Widths of layers for symmetric resonators of minimum length with: (a) $Q = 10^6$, the optimizer has an even mode; (b) $Q = 1.1 \cdot 10^6$, the optimizer has an odd mode.

Optimal symmetric structures, high quality-factor Q.

Observation (K., Koch, Verbytskyi, '20):

- (1) gradually changing deviations from periodicity,
- (2) centered defect.

Thm (K., Koch, Verbytskyi, '20).

1) If $\epsilon_1 < \epsilon_{\infty} < \epsilon_2$, the reduction is complete. Every Pareto optimal resonance/structure for Problem 1 is Pareto optimal for Problem 2.

2) If $\epsilon_1 \leq \epsilon_{\infty} \leq \epsilon_2$, the reduction is almost complete.

From the Pareto optimal frontier/structure for Problem 2 one can obtain the Pareto optimal frontier for Problem 1 and at least some of optimal structures.

Proof. Continuity/lower semi-continuity of $\rho_{\min}(\cdot)$ and star-like resonance-free region.

Partial reductions of Probl. 1 to Probl. 2.

(a) Pareto frontiers of even-mode resonances and odd-mode resonances of minimal modulus for $\epsilon_1 = \epsilon_{\infty} = 1, \epsilon_2 = 11.97$, and $\ell = 0.1243 \cdot 10^{-6}$.

(b) The set of achievable odd-mode resonances. The line marked '---' shows the corresponding Pareto frontier of minimal decay. It is proved analytically that $\omega_0 = \alpha_0 - i\beta_0 = e^{\gamma_0}\rho_{\min}(\gamma_0)$ is Pareto optimal and that \exists a jump of $\rho_{\min}(\gamma)$ at this point.

<ロト<団ト<巨ト<巨ト<巨ト<巨ト 39/41

I.K. is grateful to

- the EU-financed projects AMMODIT (grant agreement MSCA-RISE-2014-645672-AMMODIT),
- the Alexander von Humboldt Foundation,
- the VolkswagenStiftung,
- and German Research Foundation (DFG, Heisenberg-Program, Projektnummer: 509859995)

for the financial support during various stages of this reasearch.
Thank you very much for your attention!

Many thanks to the organizers for the hospitality of Reims and a very special conference!