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Abstract. We discuss inverse resonance scattering for the
Laplacian on a rotationally symmetric manifold M = (0,∞)× Y
whose rotation radius is constant outside some compact interval.
The Laplacian on M is unitarily equivalent to a direct sum of
one-dimensional Schrödinger operators with compactly supported
potentials on the half-line. We prove
• Asymptotics of counting function of resonances at large radius.
• The rotation radius is uniquely determined by its eigenvalues and
resonances.
• There exists an algorithm to recover the rotation radius from its
eigenvalues and resonances.
The proof is based on some non-linear real analytic isomorphism
between two Hilbert spaces.



Historical review There is an abundance of works devoted to
the spectral theory and inverse problems for the surface of
revolution from the view points of classical inverse Strum-Liouville
theory, integrable systems, micro-local analysis, see
Aberra-Agrawal [98] ,.... For integrable systems associated with
surfaces of revolution, see e.g. Konopelchenko-Taimanov [96],
Sanders-Wang [03],.....

Isozaki-Korotyaev [17] solved the inverse spectral problem for
rotationally symmetric manifolds (finite perturbed cylinders), which
includes a class of surfaces of revolution, by giving an analytic
isomorphism from the space of spectral data onto the space of
functions describing the radius of rotation. In another paper
Isozaki-Korotyaev [19] studied inverse problems for Laplacian on
the torus. Moreover, they obtained stability estimates: the spectral
data in terms of the profile (the radius of the rotation) and
conversely, the profile in term of the spectral data.



Resonances for specific cases of surfaces of revolution are
discussed by Christiansen [04], Datchev- Kang-Kessler [15],
Datchev-Hezari [13], Datchev [16]. As far as the authors know, the
results in our talk about resonances for Laplacian on surfaces of
revolution for our case are new.



Resonances for the case of Rd . Consider the Schrödinger
operator H = −∆ + V on L2(Rd), where d > 1 is odd and the
potential V is real compactly supported. Define the resolvent
R(λ) = (H − λ)−1, which meromorphic in the cut domain
Λ1 = C \ [0,∞) with a finite number of poles on (−∞, 0]. Each
pole is eigenvalue. We introduce the two-sheeted Riemann surface
Λ of

√
λ obtained by joining the upper and lower rims of two

copies of the cut plane C \ [0,∞) in the usual (crosswise) way.
Consider the function F (λ) = (R(λ)f , g) on the first sheet Λ1,
where f , g ∈ L2(Rd) are compactly supported. The function F has
a meromorphic extension from the first sheet Λ1 on the second
sheet Λ2 of the Riemann surface

√
λ. Each pole on the second

sheet Λ2 is a resonance for H.



Resonances for the multidimensional case (d > 2) were studied
by Melrose, Sjöstrand, and Zworski and other. We describe the
main results for odd d :

Cr
d
2 6 N(r) 6 C∗r

d
2 ∀ r > 1,

for some constants C ,C∗ depending from V , d only and N(r) is
the number of resonances in C having modulus 6 r and counted
according to multiplicity.

Even case is more complicated since the Riemann surface ∼
log λ.
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Figure: Resonances and eigenvalues λ1 < λ2 < ... for the Schrödinger operator
H. The resonances are marked by circles. The forbidden domain for the
resonances is shaded, where there are No resonances.



A lot of papers are devoted to resonances of one-dimensional
Schrödinger operators, for example, Froese [97], Hitrik [99],
Korotyaev [04], Simon [00], Zworski [87] and so on. Inverse
problems (uniqueness, reconstruction, characterization) in terms of
resonances were solved by Korotyaev for a Schrödinger operator
with a compactly supported potential on the real line [05] and the
half-line [04]. Note that Zworski [02], Brown-Knowles-Weikard [03]
discussed the uniqueness for the inverse resonance problem.

There are results about particles in external electric fields. For
example. The resonances for one-dimensional operators
− d2

dx2
+ Vπ + V , where Vπ is periodic and V is a compactly

supported potential were considered by Firsova [84], Korotyaev
[11]. Christiansen [06] considered resonances and the inverse
resonance problem for steplike potentials. Resonances for Stark
operator perturbed by compactly supported potentials were
discussed by Korotyaev [17] and by Froese and Herbst [19]. For
Stark operators resonances determine the potential uniquely (due
to EK [17]), similar to the case of Schrödinger operator with a
compactly supported potential on the half-line.



Resonances for 1-dim Dirac operators with a compactly
supported potential are discussed by and Korotyaev with co-authors
Ianchenko and Mokeev. Inverse problems terms of resonances
(uniqueness, reconstruction, characterization) for Dirac operators
with a compactly supported potential on the half line was solved
by EK+Mokeev on the real line [23] and the half-line [20].

Resonances for three and fourth order differential operators with
compactly supported coefficients on the line were studied by
Badanin and Korotyaev [19]. Here inverse resonance problems are
still open. In fact here there are a lot of open problems.

Finally I discuss so-called stability problems for resonances. For
example, let ko be a resonance for H = −∆ + V in Rd , d > 1,
where V is a compactly supported potential. There is a question:
the point kε = ko + ε (where ε ∈ C is very small) is a resonance
for some compactly supported potential? Such problem was solved
only for Schrödinger operator (EK [04]) and Dirac operators
(Mokeev [22]) with a compactly supported potential on the
half-line. But for d > 2 this problem is still open.

Note that there are other stability problems. Some of them were
considered by Marletta, Shterenberg, Weikard [10].



Recall results from EK [04], which are used below. Consider the
operator Ty = −y ′′ + py , y(0) = 0 on R+. Assume that p ∈ P,
where

P =
{
g ∈ L1real(R+), supp g ⊂ [0, 1], sup supp g = 1

}
.

It is known that T has purely abs. cont. spectrum [0,∞) plus a
finite number m > 0 of eigenvalues λ1 < ... < λm < 0 below the
continuum. The Jost solution f+(x , k) is a solution to the equation
−f ′′+ + pf+ = k2f+, x > 0 at k ∈ C \ {0} under the condition
f+(x , k) = e ixk , x > 1. The Jost function ψ(k) is defined by
ψ(k) = f+(0, k). Let n+(f ) be the number of zeros of f analytic in
C+, each zero being counted according to its multiplicity. For a
function f analytic in a neighborhood of 0, we define no(f ) = s, if
f (z) = zsg(z) where g(0) 6= 0. The Jost function ψ(k) is entire
on C and has the following asymptotics uniformly in arg k ∈ [0, π]:

ψ(k) = 1 + O(1/k) as |k | → ∞. (1)



We recall known facts about entire functions. An entire function
f is said to be of exponential type if there is a constant α such
that |f (z)| 6 const. eα|z| everywhere. The function f is said to
belong to the Cartwright class ECart , if f is entire, of exponential
type, and satisfies:∫

R

log(1 + |f (x)|)dx
1 + x2

<∞, ρ+(f ) = 0, ρ−(f ) = 2,

where ρ±(f ) = lim supy→∞
log |f (±iy)|

y .
We recall the well known result of Levinson.

Theorem (Levinson). Let the entire function f ∈ ECart . Then

N(r , f ) =
2

π
r + o(r), as r →∞,

where N(r , f ) is the total number of zeros of f with modulus 6 r .



Let f ∈ ECart and denote by {zn}∞n=1 the sequence of its zeros
6= 0 (counted with multiplicity), so arranged that 0 < |z1| 6
|z2| 6 . . . . Then the Hadamard factorization holds

f (z) = zsCe iz lim
r→+∞

∏
|zn|6r

(
1− z

zn

)
, C =

f (s)(0)

s!
,

for some integer s, where the product converges uniformly in every
bounded disc and

∞∑
1

| Im zn|
|zn|2

<∞,

f ′(z)

f (z)
= i +

s

z
+ lim

r→∞

∑
|zn|6r

1

z − zn

uniformly on compact subsets of C \
(
{0} ∪

⋃
{zn}

)
.



• The S-matrix is defined by

S(k) =
ψ(−k)

ψ(k)
= e−i2φsc (k), φsc(k) = argψ(k), k ∈ R. (2)

We call φsc phase shift. Note that S(k) is meromorphic on C. We
can define a resonance of T as a pole of S(k) in C−.
• The function ψ in C+ has simple zeros given by

k1 = i |λ1|
1
2 , . . . km = i |λm|

1
2 ∈ iR+, (3)

possibly one simple zero at 0 and infinite numbers in C−. For the
zeros in C− ∪ {0} we have 0 6 |km+1| 6 |km+2| 6 . . . (counted
with multiplicity). The zeros of ψ in C− are called the resonances.



Introduce the set J of all possible Jost functions from EK [04].
Definition J. By J we mean the class of all entire functions f
having the form

f (k) = 1 +
1

2ik

(
F̂ (k)− F̂ (0)

)
, k ∈ C, (4)

where F̂ (k) =
∫ 1
0 F (x)e2ixkdx and F ∈ P. In addition the sequence

(kn)∞n=1 of zeros of f satisfies:
i) all zeros of the function f in C+ are simple, belong to iR+.
ii) all zeros k1, .., km,m > 0 of the function f in C+ satisfy

|k1| > |k2| > ... > |km| > 0,

(−1)j f (−kj) > 0, j = 1, ...,m.
(5)

Note that J ⊂ ECart . We sometimes write f+(x , k , p), ψ(k , q), ...
instead of f+(x , k), ψ(k), ..., when several potentials are being
dealt with.



We define the mapping ψ : P→ J by p → ψ(·, p), i.e., each
p ∈ P maps the Jost function ψ(·, p) ∈ J. We recall the main
result on the inverse resonance scattering from EK [04].
Theorem A. i) The mapping p → ψ(·, p) from P to J is a
bijection.
ii) If the Jost function ψ(·, p) is given for some p ∈ P. Then there
exists the algorithm to recover the potential p ∈ P.

Note that ψ ∈ J ⊂ ECart . There are a lot of results about such
functions. For example, the Levinson Theorem gives

N(r , ψ) =
2

π
r + o(r) as r →∞,

where N(r , ψ) is a number of zeros of ψ with modulus 6 r . Recall
that Zworski [87] proved it in 1987 directly (without the Levinson
Theorem). The Fredholm determinant for Schrödinger operators
and Dirac operators with compactly supported potentials ∈ ECart .
For Stark operators and for three and fourth order differential
operators the corresponding Fredholm determinants do no belong
to ECart . It creates a big problem to solve inverse resonance
problem.



Rotationally symmetric manifolds. We consider a rotationally
symmetric manifold M = R+ × Y equipped with a warped product
metric

g = (dx)2 + r2(x)gY , x > 0. (6)

Here (Y , gY ) is a compact m-dimensional Riemannian manifold
(with or without boundary), called transversal manifold, and
r(x) > 0 is the rotation radius given by

r = ro e
2
m
Q , Q(x) = −

∫ 1

x
q(t)dt, x ∈ [0, 1],

r(x) = ro = const > 0 for x > 1.

Assume that q belongs to a class P1 given by

P1 =
{
g , g ′ ∈ L1real(R+), supp g ⊂ [0, 1], sup supp g = 1

}
.

Below we show that the geometry (i.e., the rotation radius r and
hence all derived quantities up to two integration constants) is
determined by q.



The Laplacian ∆M on M has the form

−∆M = − 1

rm
∂x
(
rm∂x

)
− ∆Y

r2
,

where ∆Y is the Laplacian on Y . We assume the Dirichlet
boundary condition, i.e. the domain of ∆M consists of the
functions f = f (x , y), (x , y) ∈ M = R+ × Y , satisfying the
following boundary condition

f |∂M = 0. (7)

The negative Laplacian −∆Y on Y (with suitable boundary
conditions when Y has a boundary) has a discrete spectrum,
0 6 E1 6 E2 6 · · · , with corresponding orthonormal family of
eigenfunctions Ψν , ν > 1, in L2(Y ). Recall simple examples.
(1) The case when Y has no boundary. For example, if Y = S1,
then E1 = 0,E2 = π2, · · · .
(2) The case when Y has a boundary. For example, if Y is a
compact interval in R1, e.g. [0, 1], then E1 = 0,E2 = π2, · · · , for
the Neumann boundary condition, and E1 = π2,E2 = (2π)2, · · · ,
for the Dirichlet boundary condition.



By the spectral decomposition of −∆Y , the Laplacian on (M, g)
acting on L2(M) is unitarily equivalent to a direct sum of
one-dimensional Schrödinger operators Hν , namely,

−∆M w ⊕∞ν=1 (Hν + uν,0). (8)

Here the operator Hν on L2(R+) is given by

Hν f = −f ′′ + pν f , f (0) = 0, (9)

and the potential p = pν(x) is defined by
p = P(q) = q′ + q2 + uν − uν,0,

uν(x) = uν,0e
− 4

m
Q(x), Q(x) = −

∫ 1
x q(t)dt,

uν,0 = Eν

r2(1)
= const .

(10)

Note that
supp pν ⊂ [0, 1], pν ∈ L1(0, 1).



Below we fix an index ν, and omit it. We consider the operator
Hf = −f ′′ + pf , f (0) = 0, where the potential
p = P(q) = q′ + q2 + uν − uν,0 is given by (10). The operator H
has purely abs. cont. spectrum [0,∞) plus a finite number
m = mν > 0 of negative eigenvalues λ1 < ... < λm < 0.
Theorem 1. i) If p is given by (10) for some q ∈ P1, then p ∈ P.
ii) If r(x) 6 ro = r(1) for all x ∈ [0, 1], then the Laplacian −∆M

has no eigenvalues.
iii) There exists a radius r(x) > ro for all x ∈ (0, 1) and νo large
enough such that each operator Hν , ν > νo has eigenvalues and
the Laplacian ∆M has infinite number of eigenvalues.



Remark. It is important for resonance scattering to show that
p ∈ P for each q ∈ P1. In order to show i) we need the following
support property of the non-linear mappings q → pν , which plays a
key role.

Lemma C. Let q, q′ ∈ L1(Ω) for Ω = (1− τ, 1) for some τ > 0
and q(1) = 0. Assume that q satisfies on Ω the following equation

q′ + q2 + u − u0 = 0, (11)

where u = u0e
βQ with β, u0 > 0. Then q = 0 on ω = (1− ε2, 1)

for ε > 0 small enough.
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Figure: (a) ∆ has eigenvalues, (b) ∆ has not eigenvalues



From P(q) ∈ P and results of Zworski [87] we obtain
Corollary 2. Let q ∈ P1. Then

Nr (ψ) =
2r

π
(1 + o(1)) as r →∞. (12)

Remark. The asymptotic behavior of the distribution function of
the eigenvalues of the Laplacian on warped product manifolds with
cylindrical ends are discussed in Christiansen-Zworski [95].



Inverse Resonance Problem. We discuss now inverse
resonance problems. We show that all resonances determine the
surface (or the rotation radius) uniquely. It is a first result about
inverse resonance problems for Laplacian and the Riemann surface.

We sometimes write ψ(k, q), kn(q), · · · instead of ψ(k), kn, · · · ,
when several functions are dealt with. We introduce the Sobolev
space of real functions

W =
{
q, q′ ∈ L2real(R+), supp q ⊂ (0, 1), q(0) = q(1) = 0

}
,

‖q‖2W = ‖q′‖2 =

∫ 1

0
|q′(x)|2dx .

The main result of my talk is
Theorem 3. i) Let ψj be the Jost function for

qj ∈W ∩ P1, j = 1, 2. If ψ1 = ψ2, then q1 = q2.
ii) Let Sj be the S-matrix for qj ∈W ∩ P1, j = 1, 2. If S1 = S2,
then q1 = q2.
iii) Any q ∈W ∩ P1 is uniquely determined by its eigenvalues and
resonances. Moreover, there exists an algorithm to recover q from
its eigenvalues and resonances.



We discuss the Proof of Theorem 3. We have two Jost solutions
f+(x , k , pj), pj = P(qj), j = 1, 2 for some qj ∈ P1 to the equation

−f ′′+ + pf+ = k2f+, x > 0, k ∈ C \ {0} (13)

satisfying the condition f+(x , k, pj) = e ixk , x > 1. These Jost
functions satisfy

f+(0, k , p1) = f+(0, k , p2),

where p = P(q) is defined in terms of the function q by
p = P(q) = q′ + q2 + uν − uν,0,

uν(x) = uν,0e
− 4

m
Q(x), Q(x) = −

∫ 1
x q(t)dt,

uν,0 = Eν

r2(1)
.



Let kn(p), n > 1 be the zeros of the Jost function f+(0, k , p) for
the equation −y ′′+py . Recall that due to Theorem A the mapping

p 7→ (kn(p))∞n=1, p ∈ P

is a bijection between P and some class of the zeros of the Jost
functions.

We consider the case pj = P(qj), and recall that
kn(P(qj)), n > 1 be the zeros of the Jost function f+(0, k ,P(q))
for the equation −y ′′ + P(q)y . Then we obtain the identity

(kn(P(q1))∞1 = (kn(P(q2))∞n=1, q1, q2 ∈W 0
1 .

The mapping q → (kn(P(q)))∞1 is the composition of two
mappings q → P(q) and p → (kn(p))∞1 , where each of them is the
corresponding injection (see Theorems A, B and Lemma C). Then
the mapping

q 7→ (kn(P(q))∞n=1,

is injection. We need to study the mapping q → P(q).



We introduce the Sobolev spaces H of real functions

H =

{
q ∈ L2real(0, 1) :

∫ 1

0
q(x)dx = 0

}
equipped with norm ‖q‖2H =

∫ 1
0 |q(x)|2dx . Thus we can consider

the mapping V : W →H given by

v = V (q) = q′ + q2 + u − c0, u(Q) = u0e
−βQ ,

Q(x) = −
∫ 1

x
q(t)dt, c0 =

∫ 1

0
(q2 + u)dx ,

(14)

where u0 = Eν

r2o
and β = 4

m . We need to the following result on the

mapping q → v = V (q).
Theorem B The mapping V : W →H , given by (14) is a real

analytic isomorphism between the Hilbert spaces W and H and
satisfies:

‖q′‖2 6 ‖v‖2 6 ‖q′‖2 + 2‖q‖3‖q′‖+ C∗‖q‖2e2β‖q‖, (15)

where the constant C∗ = u0(β + 1)(2 + βu0).



In order to prove this theorem we use results about an
isomorphism between two Hilbert spaces. There are various
methods to prove an isomorphism between two Hilbert spaces. We
use on of them from the paper of Kargaev and Korotyaev [97]. We
shortly describe this approach based on nonlinear functional
analysis. Suppose that H,H1 are real separable Hilbert spaces.
The derivative of a map f : H → H1 at a point y ∈ H is a bounded
linear map from H into H1, which we denote by f ′(y). A map
f : H → H1 is compact on H, if it maps a weakly convergent
sequence in H into a strongly convergent sequence in H1. A map
f : H → H1 is a real analytic isomorphism between H and H1, if f
is bijective and both f and f −1 are real analytic maps. Let HC be
the complexification of the real Hilbert space H.



We formulate the result from [97].
Theorem D. Let H,H1 be real separable Hilbert spaces equipped
with norms ‖ · ‖, ‖ · ‖1. Suppose that a map f : H → H1 satisfies
the following conditions:
i) f is real analytic,
ii) the operator f ′(q) has an inverse for all q ∈ H,
iii) there is a nondecreasing function F : [0,∞)→ [0,∞), such
that F (0) = 0 and

‖q‖ 6 F (‖f (q)‖1) ∀ q ∈ H,

iv) there exists a basis {en}n∈Z of H1 such that each map
(f (·), en)1 : H → R, n ∈ Z, is compact,
v) for each ε > 0 the set {q :

∑
n2(f (q), en)21 < ε} is compact.

Then f is a real analytic isomorphism between H and H1.



Thus we study the properties of our mapping ψ and check all
conditions from Theorem D.

Finally in order to show the injection of the mapping ψ we need
also Lemma C, about the support of the function P(q). These
results help us to prove uniqueness. But it is enough to show that
mapping p = P(q), q ∈ P1 maps P1 onto P. It is still open
problem.



Finally, we remark that there are at least 2 interesting open
problems connected with our results.

We list interesting open problems associated with the theory of
resonances:

1) To prove the Levinson Theorem for entire functions of any
order. Though perhaps least physical, this seems to be the deepest
problem mathematically.

2) To determine the second term in the asymptotics of the
Levinson Theorem.


