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Quasi-normal modes and the resonant response of open phononic systems

Introduction

Physical motivation

There are many systems in phononics that deal with discrete resonators in interaction with
a radiation substrate

Following ideas from photonics/plasmonics, can we use the concept of quasi-normal mode
(QNM) to predict their response?

Achaoui et al., PRB 2011 Raguin et al., Nat. Commun. 2019 Colombi et al., Sci Reports 2016

10.1103/PhysRevB.83.104201 10.1038/s41467-019-12492-z 10.1038/srep27717
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Quasi-normal modes and the resonant response of open phononic systems

Introduction

A short nomenclature of modes in wave physics

A closed �nite resonator sustains normal modes

An open �nite resonator sustains quasi-normal modes

If there is coupling to radiation modes, we speak of a resonance,
If there is no coupling, then we speak of bound states in the continuum (BIC). BIC is
lossless (real eigenfrequency) and often originates from a symmetry di�erent from continuum
waves

If there is an invariance axis, a waveguide can be formed [examples: optical waveguides,
optical �bers, surface acoustic waves, Rayleigh / Love waves in geophysics]

Outside the light or sound cone (where there are no propagating bulk waves), there are
(evanescent) guided waves,
Inside the cone, there are either resonances (also termed leaky waves) or BICs!

The same concepts and terms are used for crystal waveguides (that are periodic along a
given direction)
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Introduction

Normal modes

Normal modes are eigenmodes of closed structures

Mathematically, for elastic waves they are the eigensolutions of

ω2
nρ(ωn)un = −∇ · (c(ωn) : ∇un) (1)

with exterior boundary conditions (typically free or clamped)

In the absence of loss, eigenfrequencies ωn are real and eigenvectors un are orthogonal

The total energy of normal modes is bounded

H(un) =
1

2

(∫
S∗
n : c(ω) : Sn + ω2

n

∫
u∗n · ρ(ω)un

)
< ∞ (2)

Sn = ∇un (3)
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Quasinormal modes

Quasinormal modes (QNMs)

Quasi-normal modes (QNMs) are eigenmodes of
open structures, su�ering radiation to in�nity

They satisfy the same equation as normal modes

ω2
nρ(ωn)un = −∇ · (c(ωn) : ∇un) (4)

but with outgoing-wave boundary conditions at
in�nity and with ωn ∈ C
Quality factor: Qn = ℜωn

2ℑωn

Their total energy is unbounded (similar to leaky
modes of waveguides)

Nylon

Water

Figure: A nylon rod immersed in
(in�nite) water. What are its
mechanical eigenmodes?
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Quasinormal modes

Response function and poles

We can also solve for the frequency
response (with the PML) and
observe poles
Laude & Korotyaeva, Phys. Rev. B

97, 224110 (2018)

Maxima give approximately the real
part of the eigenfrequency

The peak width gives a quality
factor Q

Resonant response gives
approximately the QNM!

Example: Y. F. Wang, S. Y. Zhang,

Y. S. Wang, & V. Laude, Phys. Rev.

B 102 144303 (2020)
R1: 733 m/s R2: 1162 m/s R3: 1336 m/s

(a)

(b)

R1
R2

R3

Q H D
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Quasinormal modes

Stochastic excitation technique to obtain the resolvent band structure

Physical idea: local excitations of the system result in resonances. Spatially random
excitation garanties none are forgotten
Laude & Korotyaeva, Phys. Rev. B 97, 224110 (2018)
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Quasinormal modes

How can we obtain QNMs? There are 2 basic ways...

1 The beautiful and heroic way: Green's function techniques

Use some approximation in the �nite region (e.g. FEM), couple it to the exterior analytic
solution (plane waves in 1D, Bessel/Hankel functions in 2D, spheroidal harmonics in 3D)
Example: M. B. Doost, W. Langbein, and E. A. Muljarov. "Resonant-state expansion
applied to three-dimensional open optical systems." Physical Review A 90 013834 (2014).

2 The 'ugly' and e�cient way: replace the in�nite radiation medium with a perfectly
matched layer (PML)

Use some eigenvalue solver to obtain the complex eigenmodes of the now 'closed' system
Example: C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne. Theory of the
spontaneous optical emission of nanosize photonic and plasmon resonators. Physical Review
Letters 110 237401 (2013).

Beware, it is not as easy as it seems...

PMLs have many 'spurious' eigenmodes, it is di�cult to sort QNMs from them!
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Quasinormal modes

De�nition of computational domains

Radiation 
medium

∞

PML

a b c

Figure: De�nition of supporting domains for wave resonance and propagation. (a) Finite, closed
domain supports normal modes. (b) In�nite, open domain supports quasinormal modes. (c) These can
be approximated by closing the domain of computation with a perfectly matched layer (PML), that is
the truncated image of the in�nite domain in (b) in a complex coordinate transformation.
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Quasinormal modes

A practical algorithm to obtain one QNM

Start with ω0 close to a maximum of the response

1 Initialization is stochastic: solve
(K − ω2

0M)u0 = F for random F

2 Iteratively solve (K − ω2
nM)un+1 = Mun; the

solution converges to the nearest eigenvector

3 At the end of the iteration, normalize the
eigenvector by |un|∞

4 and then evaluate ω2
n = un ·K · un/un ·M · un

mode 1

mode 2

mode 3
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Predicting the response function by reciprocity

Transposing Sauvan's method to elastodynamics � 1

[Sauvan et al. Physical Review Letters 110 237401 (2013)]

Consider two di�erent solutions of the elastodynamic equation (α = 1, 2):

Fα +∇ · (c : ∇uα) =
∂

∂t

(
ρ
∂uα
∂t

)
(5)

Weak form of the equation for one solution with the test function as the other solution:∫
S2 : c(ω1) : S1 − ω2

1

∫
u2 · ρ(ω1)u1 =

∫
u2 ·F1 (6)

and the same equation with indices 1 and 2 permuted. Their di�erence leads to∫
S2 : [c(ω1)− c(ω2)] : S1 −

∫
u2 · [ω2

1ρ(ω1)− ω2
2ρ(ω2)]u1 =

∫
u2 ·F1 − u1 ·F2 (7)
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Predicting the response function by reciprocity

Transposing Sauvan's method to elastodynamics � 2

Take sol. 2 as QNM number n and sol. 1 as the forced elastodynamic solution at ω:∫
Sn : [c(ω)− c(ωn)] : S −

∫
un · [ω2ρ(ω)− ω2

nρ(ωn)]u =

∫
un ·F,∀n (8)

The QNMs constitute a basis for the solution (eigenfunction expansion theorem):

u(ω) =
∑
m

αm(ω)um (9)

∑
m

Bnm(ω)αm(ω) =

∫
un ·F = Fn,∀n (10)

Bnm(ω) =

∫
Sn : [c(ω)− c(ωn)] : Sm −

∫
un · [ω2ρ(ω)− ω2

nρ(ωn)]um (11)

If the QNMs are known, the Bnm(ω) coe�cients are easily computed, and the αm(ω) are
obtained by solving a linear problem as a function of frequency.
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Predicting the response function by reciprocity

An elliptical nylon rod in water
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Analysis of the response: poles, Q, modal volume

Poling the response using QNMs

Sauvan's trick is to pole the previous equation by de�ning

Anm(ω) =
1

ω − ωm
Bnm(ω) (12)

=
1

ω − ωm

[∫
Sn : [c(ω)− c(ωn)] : Sm −

∫
un · [ω2ρ(ω)− ω2

nρ(ωn)]um

]
(13)

Anm(ωn) = 0 if m ̸= n and

Ann(ωn) =

∫
Sn :

∂c

∂ω
(ωn) : Sn −

∫
un ·

∂(ω2ρ(ω))

∂ω
(ωn)un (14)

In the viscoelastic case (µ is the phonon viscosity tensor):

Ann(ωn) = −2ωn

∫
un · ρun + ı

∫
Sn : µ : Sn (15)

In the vicinity of each QNM:

αn(ω) ≈
1

ω − ωn

Fn

Ann(ωn)
+ Σn(ω) (16)
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Analysis of the response: poles, Q, modal volume

Complex modal volume for QNMs

Considering some point in space r0, the modal volume is

Vn =
Ann(ωn)

2ωn[ρ(r0)u2n(r0)]
(17)

r0 = argmax
r

|ρ(r)u2n(r)| (18)

The modal volume is insensitive to multiplication by an arbitrary complex number. Indeed,
QNMs are de�ned up to a complex multiplication constant only, as all eigenmodes. At
resonance, ω ≈ ℜωn and the 'phononic Purcell e�ect' is

u(ℜωn) ≈ −i
1

ωnℜωn[ρ(r0)u2n(r0)]

Qn

Vn
Fnun. (19)
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Analysis of the response: poles, Q, modal volume

A nanoscale nickel strip on fused silica (Fx = 1)

w = 100 nm, h = 1000 nm, 2D (strip) geometry
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Analysis of the response: poles, Q, modal volume

A nanoscale nickel tuning fork on fused silica (Fx = 1)

w = 100 nm, h = 1000 nm, δ = 50 nm
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Acoustic reciprocity

Transposing Sauvan's method to acoustic waves � 1

The acoustic equation at frequency ω replacing the elastodynamic equation is

−∇ · (ρ−1∇p)− ω2B−1p = ∇ · (ρ−1F) = g (20)

for pressure �eld p(r) (a scalar �eld) and body force F(r). B(r) is the elastic modulus and can
be dispersive. The scalar source �eld g(r) is introduced for convenience.∫

∇p2ρ
−1
1 ∇p1 − ω2

1

∫
p2B

−1
1 p1 =

∫
p2g1 (21)

with ρ−1
1 = ρ−1(ω1) and B−1

1 = B−1(ω1).∫
∇p2[ρ

−1
1 − ρ−1

2 ]∇p1 −
∫

p2[ω
2
1B

−1
1 − ω2

2B
−1
2 ]p1 =

∫
p2g1 − p1g2. (22)
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Acoustic reciprocity

Transposing Sauvan's method to acoustic waves � 2

Take solution 2 as QNM number n and solution 1 as the current solution p depending on ω,∫
∇pn[ρ

−1(ω)− ρ−1
n ]∇p −

∫
pn[ω

2B−1(ω)− ω2
nB

−1
n ]p =

∫
png ,∀n. (23)

The QNMs constitute a basis for the solution (per the eigenfunction expansion theorem),

p(ω) =
∑
m

βm(ω)pm. (24)

∑
m

Dnm(ω)βm(ω) =

∫
png = gn,∀n (25)

with

Dnm(ω) =

∫
∇pn[ρ

−1(ω)− ρ−1
n ]∇pm −

∫
pn[ω

2B−1(ω)− ω2
nB

−1
n ]pm. (26)

If the QNMs are known, the Dnm(ω) coe�cients are easily computed, and the βm(ω) are
obtained by solving a small linear problem as a function of frequency.
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Acoustic reciprocity

Transposing Sauvan's method to acousto-elastic resonances

ω2

∫
Ωe

v · ρeu−
∫
Ωe

S(v) : c : S(u)−
∫
σe

vnp − ω−2

∫
Ωa

∇qρ−1
a ∇p +

∫
Ωa

qB−1p +

∫
σa

unq =

∫
Ωe

v ·F

(27)

Bnm(ω) =

∫
Ωe

Sn : [c(ω)− c(ωn)] : Sm −
∫
Ωe

un · [ω2ρ(ω)− ω2
nρ(ωn)]um

+

∫
Ωa

∇pn[ω
−2ρ−1(ω)− ω−2

n ρ−1
n ]∇pm −

∫
Ωa

pn[B
−1(ω)− B−1

n ]pm. (28)

u(ω) =
∑
m

αm(ω)um, p(ω) =
∑
m

αm(ω)pm (29)

Coe�cients αm(ω) are obtained by solving∑
m

Bnm(ω)αm(ω) =

∫
Ωe

un ·F = Fn,∀n. (30)
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Conclusion

Conclusion and outlook

Quasi-normal modes are the eigenmodes of resonant (open) structures

Their eigenfrequencies can be obtained in the complex plane; the modal shape is obtained
in the process

Material dispersion and loss are accounted for

Their modal volume is complex-valued!

Only a small number of QNMs are required to 'predict' the frequency response for any
excitation

Theory provided for elastodynamics, acoustics, and acousto-elasticity

V. Laude and Y.-F. Wang, Phys. Rev. B 107, 144301 (2023)
https://doi.org/10.1103/PhysRevB.107.144301
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Conclusion

Thanks and advertisement

Finite element
computations thanks to

https://freefem.org/
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