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Quasi-normal modes and the resonant response of open phononic systems

L Introduction

Physical motivation

m There are many systems in phononics that deal with discrete resonators in interaction with
a radiation substrate

m Following ideas from photonics/plasmonics, can we use the concept of quasi-normal mode
(QNM) to predict their response?
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Quasi-normal modes and the resonant response of open phononic systems

L Introduction

A short nomenclature of modes in wave physics

a/23

m A closed finite resonator sustains normal modes
m An open finite resonator sustains quasi-normal modes

m If there is coupling to radiation modes, we speak of a resonance,

m If there is no coupling, then we speak of bound states in the continuum (BIC). BIC is
lossless (real eigenfrequency) and often originates from a symmetry different from continuum
waves

m If there is an invariance axis, a waveguide can be formed [examples: optical waveguides,
optical fibers, surface acoustic waves, Rayleigh / Love waves in geophysics]

m Outside the light or sound cone (where there are no propagating bulk waves), there are
(evanescent) guided waves,

m Inside the cone, there are either resonances (also termed leaky waves) or BICs!

m The same concepts and terms are used for crystal waveguides (that are periodic along a
given direction)
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L Introduction

Normal modes

m Normal modes are eigenmodes of closed structures
m Mathematically, for elastic waves they are the eigensolutions of

w2p(wp)up, = =V - (c(wn) : Vu,) (1)

with exterior boundary conditions (typically free or clamped)
m In the absence of loss, eigenfrequencies w,, are real and eigenvectors u, are orthogonal

m The total energy of normal modes is bounded

) = 5 ([ 535 c@): 5,42 [ uhpleun) <o )
S, = Vu, (3)
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LQualinormal modes

Quasinormal modes (QNM:s)

m Quasi-normal modes (QNMs) are eigenmodes of
open structures, suffering radiation to infinity

m They satisfy the same equation as normal modes
w2p(wnup, = =V - (c(wp) : Vu,) (4)

but with outgoing-wave boundary conditions at
infinity and with w, € C

m Quality factor: @, = Reon

28w,

m Their total energy is unbounded (similar to leaky
modes of waveguides) Figure: A nylon rod immersed in

(infinite) water. What are its

mechanical eigenmodes?
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LQualinormal modes

Response function and poles

m We can also solve for the frequency @ 1 R3
response (with the PML) and g 11 RI
observe poles g;, 1e-15 “x,‘ R2
Laude & Korotyaeva, Phys. Rev. B g
97, 224110 (2018) g

m Maxima give approximately the real 7 et
part of the eigenfrequency 1e-18 ‘ ‘

m The peak width gives a quality Recuoed Frequer::;?m/s) b

factor @

m Resonant response gives
approximately the QNM!

m Example: Y. F. Wang, S. Y. Zhang,
Y. S. Wang, & V. Laude, Phys. Rev.

B 102 144303 (2020 e
( ) R1: 733 m/s R2:1162 m/s R3:1336.m/s
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LQua:inormal modes

Stochastic excitation technique to obtain the resolvent band structure

m Physical idea: local excitations of the system result in resonances. Spatially random

excitation garanties none are forgotten
Laude & Korotyaeva, Phys. Rev. B 97, 224110 (2018)
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LQualinormal modes

How can we obtain QNMs? There are 2 basic ways...

The beautiful and heroic way: Green's function techniques
m Use some approximation in the finite region (e.g. FEM), couple it to the exterior analytic
solution (plane waves in 1D, Bessel/Hankel functions in 2D, spheroidal harmonics in 3D)
m Example: M. B. Doost, W. Langbein, and E. A. Muljarov. "Resonant-state expansion
applied to three-dimensional open optical systems." Physical Review A 90 013834 (2014).
The "ugly’ and efficient way: replace the infinite radiation medium with a perfectly
matched layer (PML)
m Use some eigenvalue solver to obtain the complex eigenmodes of the now closed’ system
m Example: C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne. Theory of the
spontaneous optical emission of nanosize photonic and plasmon resonators. Physical Review
Letters 110 237401 (2013).

Beware, it is not as easy as it seems...

PMLs have many 'spurious’ eigenmodes, it is difficult to sort QNMs from them!
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LQualinormal modes

Definition of computational domains

Radiation
medium

o0

Figure: Definition of supporting domains for wave resonance and propagation. (a) Finite, closed
domain supports normal modes. (b) Infinite, open domain supports quasinormal modes. (c) These can
be approximated by closing the domain of computation with a perfectly matched layer (PML), that is
the truncated image of the infinite domain in (b) in a complex coordinate transformation.

10/23
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LQualinormal modes

A practical algorithm to obtain one QNM

Start with wy close to a maximum of the response
Initialization is stochastic: solve mode 1
(K — w3M)ug = F for random F
Iteratively solve (K — w2M)up1 = Mu,; the v
solution converges to the nearest eigenvector A

At the end of the iteration, normalize the mode 2
eigenvector by |up|eo

and then evaluate w2 = u,-K-u,/u,-M-u,

mode 3
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[ Predicting the response function by reciprocity

Transposing Sauvan’'s method to elastodynamics — 1

[Sauvan et al. Physical Review Letters 110 237401 (2013)]
Consider two different solutions of the elastodynamic equation (a = 1,2):

0 Oug,
Fa—l-V-(C:Vua):a (p;t)

Weak form of the equation for one solution with the test function as the other solution:

/52 : c(wl):Sl—w%/U2-p(w1)u1 :/uz-Fl

and the same equation with indices 1 and 2 permuted. Their difference leads to

/52 te(wr) = e(w2)] 51— /Uz Jwin(wr) — wip(wa)lur = /Uz'Fl —u-Fp
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[ Predicting the response function by reciprocity

Transposing Sauvan’'s method to elastodynamics — 2

Take sol. 2 as QNM number n and sol. 1 as the forced elastodynamic solution at w:

[ 50tetw) = clon: S = [ un [20() = Epn)lu = [ un-Fn (8)

The QNMs constitute a basis for the solution (eigenfunction expansion theorem):

u(w) =Y am(w)um (9)

Z Bom(w)am(w) = /u,, -F=F,,Vn (10)

Bon() = [ Sn: @)~ clnl] s S~ [ un- [20() ~ plwlun (1)

If the QNMs are known, the B,,(w) coefficients are easily computed, and the a,,(w) are

obtained by solving a linear problem as a function of frequency.
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[ Predicting the response function by reciprocity

An elliptical nylon rod in water
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TABLE I. Characteristics for the QNMs of a cylindrical nylon
rod immersed in water. The reduced frequency is wd/(2m)
with d the diameter of the rod.

Mode 0o 1 2 3 4
Reduced frequency (m/s) 548 562 790 850 919
Q 12 48 24 30 12
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LAna|y|i: of the response: poles, Q, modal volume

Poling the response using QNMs

Sauvan'’s trick is to pole the previous equation by defining

An() = [ Bne) (12)
== —1wm [/ Sn i [e(w) = c(wn)] : Sm f/un.[wzp(w) — w2 p(wn)]um (13)

Anm(wn) =0 if m# n and
Ann(wn) = /sn % )5 /UH_W(%)UH a0

In the viscoelastic case (u is the phonon viscosity tensor):

Ann(wn) = —2w,,/u,,-pu,, + 1/5,, TR (15)

In the vicinity of each QNM:

1 F,
W — Wn Ann(wn)

an(w) ~ + ¥h(w) (16)
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LAna|y|i: of the response: poles, Q, modal volume

Complex modal volume for QNMs

Considering some point in space ry, the modal volume is

_ Ann (wn)
Vo = o) ()] (an

ro = argmax|p(r)up(r)| (18)

The modal volume is insensitive to multiplication by an arbitrary complex number. Indeed,
QNMs are defined up to a complex multiplication constant only, as all eigenmodes. At
resonance, w =~ Rw, and the 'phononic Purcell effect’ is

P SR
wnRwn[p(ro)ua(ro)] Vi

u(§Rw,,) ~ Fnun~ (19)
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LAna|ylil of the response: poles, Q, modal volume

A nanoscale nickel strip on fused silica (F

10000 \ ‘ ;
Forced response
Eigen-expansion
1000
— 100
>
s
3 10
@
c
w 1
0.1
Mode freq. (GHz) Q volume (pm?) polarization
0.01 ‘ ‘ ‘ ‘ ‘ ‘ 0 0.0681 12600 0.0272 (0.997,0.003, 0)
0 02 04 06 08 1 1.2 14 1 0.417 1000 0.0277 (0.979,0.021,0)
Frequency (GHz) 2 0676 9 0.0923 (0,0,1)
3 1.12 60 0.0285 (0.959,0.041,0)

w = 100 nm, h = 1000 nm, 2D (strip) geometry
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LAna|ylil of the response: poles, Q, modal volume

A nanoscale nickel tuning fork on fused silica (F, =

100000 : : ‘ ‘ ‘ ‘ ‘
Forced response
Eigen-expansion
10000 | gen-exp |
1000 |
3
< 100 ¢
>
>
@ 10 §
c
I
1 L
04 L Mode freq. (GHz) volume umz) polarization
: 0 0.0674 z40000 0.0536 (0.997,0.003,0)
1 0.0689 6700  0.0533 (0.997,0.003,0)
0.01 2 0.414 334 0.0569 (0.979,0.021,0)
0 02 04 06 08 1 1.2 14 3 0.421 4200 0.0524 (0.972,0.028,0)
Frequency (GHz) 4 0659 3200 0.113 (0,0,1)
5 0.993 82 0.103 (0.01,0.99,0)
w = 100 nm, h = 1000 nm, 6 = 50 nm 6 1.137 200 0.0365 (0.957,0.043,0)
7 1.369 10 0.474 (0,0,1)
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L Acoustic reciprocity

Transposing Sauvan’'s method to acoustic waves — 1

The acoustic equation at frequency w replacing the elastodynamic equation is
V- (p'Vp) —w?B p=V (p'F) =g (20)

for pressure field p(r) (a scalar field) and body force F(r). B(r) is the elastic modulus and can
be dispersive. The scalar source field g(r) is introduced for convenience.

/Vp2p1_1Vp1 —wf/szl_lm = /Pzgl (21)

with p;t = p~(w1) and Byt = B (w1).

/sz[/)fl — 03 1Vps */Pz[w%Bfl —wiB g = /ngl — p1g2- (22)
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L Acoustic reciprocity

Transposing Sauvan’'s method to acoustic waves — 2

20/23

Take solution 2 as QNM number n and solution 1 as the current solution p depending on w,

[ V0o @) = 01190 [ pile?B N w) 2B, o= [ pugin (23)

The QNMs constitute a basis for the solution (per the eigenfunction expansion theorem),

p() = 3 Bn(e)Pm- (24)
> Dom(@)Bm(w) = / Png = &n,Vn (25)

with
Dyn(w) = / Vpulo () — p3 1V pm — / pl?B Y (w) ~ 2By pm.  (26)

If the QNMs are known, the D, (w) coefficients are easily computed, and the §,,(w) are
obtained by solving a small linear problem as a function of frequency.
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L Acoustic reciprocity

Transposing Sauvan’'s method to acousto-elastic resonances

w2/ v-peu—/ S(v):c:S(u)—/ v,,p—w_Q/ qua_1Vp+/ qB_lp—i—/ u,,q:/ v-F
Q. Qe Oe Q, Q, T, Q

e

(27)

Bom(w) = / Sy [c(w) — c(wn)] : S — / n - [020() — w2p(n)]um

e

+ / 7 ) 05 9 - / B B e (29

u() = Y an(@um pe) = an(w)om (29)

Coefficients am(w) are obtained by solving

> Bam(w)am(w) = / up-F = Fp,Vn. (30)
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L conclusion

Conclusion and outlook

m Quasi-normal modes are the eigenmodes of resonant (open) structures

m Their eigenfrequencies can be obtained in the complex plane; the modal shape is obtained
in the process

m Material dispersion and loss are accounted for
m Their modal volume is complex-valued!

m Only a small number of QNMs are required to 'predict’ the frequency response for any
excitation

m Theory provided for elastodynamics, acoustics, and acousto-elasticity

V. Laude and Y.-F. Wang, Phys. Rev. B 107, 144301 (2023)
https://doi.org/10.1103/PhysRevB.107.144301
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L conclusion

Thanks and advertisement
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