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Introduction. Subwavelength resonant systems

• The Minnaert bubble.

A simple heuristic model for the dynamics of a gas bubble

M. Minnaert: On musical air-bubbles and the sounds of running
water, Philosophical Magazine Series 7, 1933

bubble radius � acoustic wavelenght

⇓
there is a (generalized) eigenfunction corresponding to a specific
value ωM of the frequency (nowadays called ”Minnaert
resonance”) having a peak in its profile

⇓
enhancement of the scattering of sound waves with frequency ω = ωM



• Subwavelength resonance systems.

Models presenting Minnaert-like resonances created by the
presence small inhomogeneities in an otherwise homogeneous
medium have received a lot of attention in recent years, creating
the new subject of

”subwavelength resonance systems”

Wave propagation in the presence of small scaled but highly
contrasted inhomogeneities appears in different areas of applied
sciences

acoustics (micro-bubbles)

electromagnetism (nano-particles)

elasticity (micro-inclusions)



It is observed, both experimentally and theoretically, that there is a
critical ratio between the size and the contrast of the
inhomogeneities under which the generated fields can be drastically
enhanced, the amplification being more pronounced when the
incident frequency is close to a specific value.
This enhancement has applications for the design of wave systems
in a large variety of applications such as

superresolution

sensing

focusing

cloaking

the design of negative refractive index metamaterials

.......



The mathematical model.

Let Ω ⊂ R3 be an open bounded and connected domain with a
regular boundary Γ := ∂Ω.
We define the contracted domain modeling the small
inhomogeneity placed at the point y0 by

Ωε := {x : x = y0 + ε (y − y0) , y ∈ Ω} , ε� 1

and denote with Γ ε := ∂Ωε its boundary.
The acoustic medium is defined by the density ρ and the bulk
modulus k and the evolution equation for the acoustic field is

1

k
∂ttu = ∇·

(
1

ρ
∇u
) [

≡ ∂ttu = v2ρ∇·
(

1

ρ
∇u
) ]

.

In order to model the presence of the inhomogeneity, ρ and k are
both chosen discontinuous across the boundary Γ ε.



We consider the case of an inhomogeneity with high contrast of
both is mass density and bulk modulus:

1

ρ
=

1

k
=

{
ε−2 inside Ωε

1 outside Ωε
≡ 1R3\Ωε + ε

−2 1Ωε

Then, one looks for the scattering solutions of the kind

u(t, x) = e−iωtuω(x),

generated by the incoming plane waves

uinc(t, x) = e−iωtuincω (x) , uincω (x) = e iωθ·x .



Imposing the natural transmission-type boundary conditions at Γ ε

and the outgoing Sommerfeld radiation condition at infinity, one
obtains the stationary scattering boundary value problem (s.b.v.p.
for short)

∇·(1R3\Ωε + ε
−21Ωε)∇uω +ω2(1R3\Ωε + ε

−21Ωε)uω = 0, in R3\Γ ε,

γex
0 (ε)uω = γin

0 (ε)uω , γex
1 (ε)uω = ε−2 γin

1 (ε)uω , on Γ ε,

lim |x |↗∞ (x ·∇− iω|x |) uscattω (x) = 0, uscattω := uω − uincω .

Here γ
in/ex
0 (ε) and γ

in/ex
1 (ε) denote the lateral Dirichlet and

Neumann traces on the boundary Γ ε.



If [γ0(ε)] and [γ1(ε)] denotes the jumps of the traces across the
boundary, the above scattering problem rephrases, omitting for
brevity the Sommerfeld radiation condition, as
(
∆+ω2

)
uω = 0 , in R3\Γ ε ,

[γ0(ε)] uω = 0 , [γ1(ε)] uω =
(
ε−2 − 1

)
γin
1 (ε)uω , on Γ ε .



We introduce the Dirichlet-to-Neumann operator

DNz(ε) : H
1/2(Γ ε)→ H−1/2(Γ ε)

for the domain Ωε defined by

DNz(ε)ϕ := γin
1 (ε) uϕ ,

{(
∆+ z2

)
uϕ = 0 , in Ωε ,

γin
0 (ε)uϕ = ϕ on Γ ε .

Such a definition is well-posed whenever z2 /∈ σ(−∆D
Ωε), where

∆D
Ωε is the Dirichlet Laplacian in L2(Ωε).

Since inf σ(−∆D
Ω) > 0, by

z2 ∈ σ(−∆D
Ωε) ⇐⇒ ε2z2 ∈ σ(−∆D

Ω) ,

there follows that for each z ∈ C there exists ε0 > 0 small enough
(depending on z) such that DNz(ε) exists for all 0 < ε < ε0.



Assuming ε2ω2 /∈ σ(−∆D
Ω), for the solution uω of the s.b.v.p. one

has
γin
1 (ε)uω = DNω (ε)γin

0 (ε)uω ≡ DNω(ε)γ0(ε)uω.

and the s.b.v.p. recasts as
(
∆+ω2

)
uω = 0 , in R3\Γ ε ,

[γ0(ε)] uω = 0 , [γ1(ε)] uω =
(
ε−2 − 1

)
DNω(ε)γ0(ε)uω, on Γ ε .



Hence, the initial scattering problem reduces to the search of the
generalized eigenfunctions of the linear operator

Hω(ε) : dom(Hω(ε)) ⊂ L2(R3)→ L2(R3)

defined by
Hω(ε)u := ∆R3\Γεu,

dom(Hω(ε)) :=
{
u ∈ H2

∆(R
3\Γ) ∩ H1(R3) :

[γ1(ε)] u =
(
ε−2 − 1

)
DNω(ε)γ0(ε)u

}
,

where H2
∆(R

3\Γ ε) :=
{
u ∈ L2(R3) : ∆R3\Γε ∈ L2(R3)

}
.

Let us remark that the generalized eigenfunctions of Hω(ε) always
satisfy the Sommerfeld radiation conditions.



Such a linear operator −Hω(ε) is bounded from below and
self-adjoint.
Its quadratic form Fω(ε) has domain H1(R3) and acts as

Fω(ε)(u) = ‖∇u‖2L2(R3) +
(
ε−2 − 1

)
〈DNω(ε)γ0(ε)u, γ0(ε)u〉− 1

2
, 1
2
.

−Hω(ε) rewrites as a Schrödinger operator with a singular
delta-type perturbation

−Hω(ε)u = −∆u+̇
(
ε−2 − 1

)
(DNω(ε)γ0(ε)u)δΓε .



Using boundary layer operators, one gets the Krein-type resolvent
formula(

− Hω(ε) − z2
)−1

=
(
− ∆− z2

)−1
− Gz(ε)Λ

ω
z (ε)G−z̄(ε)

∗ ,

where

Λωz (ε) := ε

(
ε2

1 − ε2
+ DNεωSεz

)−1

DNεω,

DNz the Dirichlet-to-Neumann operator of Ω, Sz the boundary
layer operators of Γ

Sz := γ0SLz , SLzϕ(x) :=
1

4π

∫
Γ

e iz |x−y |

|x − y |
ϕ(y) dσ(y)

and
Gz(ε) := ε

1/2UεSLεz ,

Uε the unitary operator in L2(R3)

Uεf (x) := ε
−3/2f (ε−1(x − y0) + y0).



Resolvent expansions

Now, we are interested in the behavior of the resolvent(
− Hω(ε) − z2

)−1
: L2(R3)→ L2(R3), ε� 1.

By the previous resolvent formula, this means that we need to
study the behavior of

Gz(ε) : H
−1/2(Γ)→ L2(R3), ε� 1

and
Λωz (ε) : H

1/2(Γ)→ H−1/2(Γ), ε� 1.

As regards Gz(ε), one gets

‖Gz(ε) − Gz‖H−1/2(Γ),L2(R3) . ε
1/2,

Gzφ(x) :=
1

4π

(∫
Γ

φ(y) dσ(y)

)
e iz |x−y0|

|x − y0|
, φ ∈ L2(Γ) .



The study of the behavior of Λωz (ε) is much more involved.
At first, one takes into account the factorization

DNεω = S−1
εω

(
1

2
+ Kεω

)
,

where Kz is the Poincaré-Neumann operator

Kz := γ0DLz , DLzϕ(x) :=
1

4π

∫
Γ

∂

∂ν

e iz |x−y |

|x − y |
ϕ(y) dσ(y).

This leads to the rewriting

Λωz (ε) = ε(1 − ε2)S−1
εω

(
ε2+

(
1 − ε2

)(1

2
+ Kεω

)
SεzS

−1
εω

)−1

SωεDNωε .



One has

Sz = S0 +
+∞∑
n=1

S(n) z
n ,

where the series converges in the Hilbert-Schmidt norm of
operators on H−1/2(Γ) to H1/2(Γ) and

S(n)φ(x) =
1

4π

in

n!

∫
Γ

|x − y |n−1φ(y) dσ(y) .

Moreover, S0 = γ0SL0 is coercive and thus
S−1
0 : H1/2(Γ)→ H−1/2(Γ) is bounded and induces an inner

product in H1/2(Γ):

〈φ,ϕ〉S−1
0

:=

∫
Γ

S−1
0 φ(x)ϕ(x) dσ(x) .



As regards the Poincaré-Neumann operator, one has

Kz = K0 + K(2) z
2 +

+∞∑
n=3

K(n) z
n ,

where the series converges in the Hilbert-Schmidt norm of
operators in H1/2(Γ) and

K(n)φ(x) = −(n − 1)
1

4π

in

n!

∫
Γ

ν(y)·(x − y)|x − y |n−3φ(y) dσ(y) .

Moreover, K0 is a compact operator, σ(K0) ⊆ [−1/2, 1/2) and
λ0 = −1/2 is a simple eigenvalue with eigenfunction φ0 = 1.



Denoting by
P0 : H

1/2(Γ)→ H1/2(Γ)

be the orthogonal (w.r.t. the inner product induced by S−1
0 )

projector onto the subspace generated by the eigenfunction
φ0 = 1, and defining

P⊥0 := 1 − P0

the projector onto the orthogonal,

K0 : H
1/2(Γ)→ H1/2(Γ)

has the decomposition

K0 = −
1

2
P0 + P⊥0 K0P

⊥
0 .



This gives

1

2
+ Kεω =P0

(
(εω)2K(2) + (εω)3K(3) + O((εω)4)

)
P0

+ P⊥0

(
1

2
+ K0 + O((εω)2)

)
P⊥0

+ P0O((εω)2)P⊥0 + P⊥0 O((εω)2)P0 ,

and then

ε2 +
(
1 − ε2

)(1

2
+ Kεω

)
SεzS

−1
εω

=P0

(
ε2
(
1 +ω2K(2)

)
+ε3

(
ω2K(2) (z −ω)S(1)S

−1
0 +ω3K(3)

)
+O(ε4)

)
P0

+ P⊥0

(
1

2
+ K0 + O(ε2)

)
P⊥0 + P0O(ε2)P⊥0 + P⊥0 O(ε2)P0 .



Taking into account the relation

P0

(
1 +ω2K(2)

)
P0 =

(
1 −

ω2

ω2
M

)
P0 ,

ωM :=

√
cΩ
|Ω|

, cΩ := 〈1, 1〉S−1
0

=

∫
Γ

(S−1
0 1)(x) dσ(x) ,

by the Schur complement one gets

ω 6= ωM ⇒ ε2
(
ε2 +

(
1 − ε2

)
(1/2 + Kεω) SεzS

−1
εω

)−1

= P0

 1

1 − ω2

ω2
M

+ O(ε)

P0 + O(ε2) ,

ω = ωM ⇒ ε3
(
ε2 +

(
1 − ε2

)
(1/2 + Kεω) SεzS

−1
εω

)−1

= P0

(
4π

cΩ

i

z
+ O(ε)

)
P0 + O(ε2) .



Combining these relations with

SεωDNεω = P⊥0 (1/2 + K0)P
⊥
0 + ε2ω2K(2) + O

(
ε3
)
,

finally one obtains

Theorem
1)

If ω 6= ωM , ωM :=

√
cΩ
|Ω|

, cΩ :=

∫
Γ

(S−1
0 1)(x) dσ(x), then

∥∥∥∥∥Λωz (ε) − εω2

(
1 −

ω2

ω2
M

)−1

S−1
0 P0K(2)

∥∥∥∥∥
H1/2(Γ),H−1/2(Γ)

. ε2 ;

2) if ω = ωM then∥∥∥∥Λωz (ε) − 4πi

z |Ω|
S−1
0 P0K(2)

∥∥∥∥
H1/2(Γ),H−1/2(Γ)

. ε.



Inserting these estimates into the resolvent formula, one gets the
following

Theorem
For any z ∈ C+\iR+ and for any ε > 0 sufficiently small, one has

ω 6= ωM ⇒ ∥∥∥(−Hω(ε) − z2
)−1

−
(
−∆− z2

)−1
∥∥∥
L2(R3),L2(R3)

. ε ,

ω = ωM ⇒ ∥∥∥(−Hω(ε) − z2
)−1

− Ry0
z

∥∥∥
L2(R3),L2(R3)

. ε1/2,

where the bounded operator Ry0
z has the kernel

Ry0
z (x , y) =

1

4π

(
e iz |x−y |

|x − y |
−

1

iz

e iz |x−y0|

|x − y0|

e iz |y−y0|

|y − y0|

)
.



It turns out that Ry0
z is the resolvent of the self-adjoint operator

∆y0 defined by

dom(∆y0) :=
{
u ∈ L2(R3) : u(x) = u0(x) +

q

4π |x − y0|
,

u0 ∈ Ḣ2(R3), u0(y0) = 0, q ∈ C
}
,

∆y0 : dom(∆y0) ⊂ L2(R3)→ L2(R3) , ∆y0u := ∆u0 ≡ ∆u+q δy0 .



By a limiting absorption principle, the previous resolvent estimates
extend to the absolutely continuous spectrum and hence allow to
control the behavior of the scattering solutions as ε� 1.

Let ω > 0, α > 1/2, and let L2−α(R
3), H2

−α(R
3) denote be the

weighted L2 and Sobolev spaces with weight (1 + |x |2)−α/2.

Let uincω ∈ H2
−α(R

3) be a solution of the homogeneous Helmholtz
equation

(∆+ω2)uincω = 0

and define
uscattω := uω − uincω ,

where uω is the unique solution of the s.b.v.p. corresponding to
the incoming wave uincω .



Theorem
For any ε > 0 sufficiently small, one has, uniformly with respect to
the choice of uincω ,

(
uscattω (ε)

)
(x) =


ε ω2 cΩ
ω2

M−ω2 uincω (y0)
e iω|x−y0|

4π|x−y0|
+
(
rω(ε)

)
(x) , ω 6= ωM

i
ω uincω (y0)

e iω|x−y0|

|x−y0|
+
(
rω(ε)

)
(x) , ω = ωM

‖rω(ε)‖L2−α(R3) .

{
ε3/2 , ω 6= ωM

ε1/2 , ω = ωM .



Furthermore, with some more work, one also gets an expansions by
varying both ω and ε:

Theorem
Let IM be a real bounded interval containing ωM and let c0 > 0.
Then for any ε > 0 sufficiently small, the expansion

(
uscatt
ω (ε)

)
(x) =

εω2cΩ uincω (y0)

4π(ω2
M −ω2) − iεω3cΩ

e iω|x−y0|

|x − y0|
+ (rω(ε))(x) ,

‖rω(ε)‖L2−α(R3) .
ε3/2

ω2
M −ω2

, α > 1/2 .

holds uniformly with respect to ω in {ω ∈ IM : |ω−ωM | ≥ c0 ε}
and uincω in any bounded subset of H2

−α(R
3).



Conclusions

• These estimates show that when ω approaches ωM , the
scattering system undergoes a transition between an asymptotically
trivial scattering and a non-trivial one.

• The estimates hold in the whole space and improve all previously
known expansion formulae which were limited to the far-field zone
|x |� 1, without an uniform control-in-space of the errors.

• One gets an explicit self-adjoint operator governing the limiting
scattering process; there was no prior knowledge about it.
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