On the inverse problem for Love waves in a layered, elastic half-space

Julien Ricaud CMAP, École polytechnique

Spectral and Resonance Problems for Imaging, Seismology and Materials Science, Université de Reims Champagne-Ardenne

November 21, 2023

Joint work with

Maarten V. de Hoop (Rice University), Josselin Garnier (École polytechnique), and Alexei Iantchenko (Malmö University)

M. V. de Hoop, J. Garnier, A. lantchenko, J. R., Inverse problem for Love waves in a layered, elastic half-space, e-print (2023), https://hal.science/hal-03994654

Julien Ricaud

Inverse problem for Love waves

ASP 2023, Nov. 20-24

Motivations

Imaging crustal and upper mantle structures: recovering the parameters of the medium from the dispersion curves of the surface waves.

Motivations

Imaging crustal and upper mantle structures: recovering the parameters of the medium from the dispersion curves of the surface waves.

Visual animations of surface waves [1]:

Love waves

Rayleigh waves

[1] Source: Seismological Facility for the Advancement of Geoscience (https://www.iris.edu/hq/inclass/animation/seismic_wave_motions4_waves_animated)

Motivations	Derivation	Characterization of Love waves	Recovering medium's parameters
•	OO	00000	

Motivations

Imaging crustal and upper mantle structures: recovering the parameters of the medium from the dispersion curves of the surface waves.

[BB-H96] Buchen & Ben-Hador. Free-mode surface-wave computations (1996). Geophys. J. Int. [Tho50] Thomson. Transmission of elastic avers through a stratified solid medium (1950). J. Appl. Phys. [Ha53] Haskell. The dispersion of surface waves on multilayered media (1953). Bull. Seismol. Soc. Am.

Motivations	Derivation	Characterization of Love waves	Recovering medium's parameters
0	•0	00000	0000

Derivation of the equation from the elastic wave equation in $\mathbb{R} \times \mathbb{R}^2 \times [0, +\infty)$, w/o source term.

- $\begin{cases} \rho \partial_{tt} \mathbf{u} = \operatorname{div} \boldsymbol{\tau}(\mathbf{u}) & \text{on } \mathbb{R} \times \mathbb{R}^2 \times [0, +\infty) \,, \qquad \text{(linear elastic wave equation)} \\ \boldsymbol{\tau}(\mathbf{u}) \cdot \mathbf{e}_3 = 0 & \text{at } z = 0 \,. \qquad \text{(stress-free (Neumann) BC)} \end{cases}$
- displacement vectors $\mathbf{u}(t, \mathbf{x}, z) = (u_1(t, \mathbf{x}, z), u_2(t, \mathbf{x}, z), u_3(t, \mathbf{x}, z));$
- mass density ρ(t, x, z);
- Cauchy stress tensor $au(\mathbf{u})$

Motivations	Derivation	Characterization of Love waves	Recovering medium's parameters
0	•0	00000	0000

Derivation of the equation from the elastic wave equation in $\mathbb{R} \times \mathbb{R}^2 \times [0, +\infty)$, w/o source term.

- $\begin{cases} \rho \partial_{tt} \mathbf{u} = \mathsf{div} \, \boldsymbol{\tau}(\mathbf{u}) & \text{on } \mathbb{R} \times \mathbb{R}^2 \times [0, +\infty) \,, \qquad (\text{linear elastic wave equation}) \\ \boldsymbol{\tau}(\mathbf{u}) \cdot \mathbf{e}_3 = 0 & \text{at } z = 0 \,. \qquad (\text{stress-free (Neumann) BC}) \end{cases}$
- displacement vectors $\mathbf{u}(t, \mathbf{x}, z) = (u_1(t, \mathbf{x}, z), u_2(t, \mathbf{x}, z), u_3(t, \mathbf{x}, z));$
- mass density $\rho(t, \mathbf{x}, z)$;
- Cauchy stress tensor $\boldsymbol{\tau}(\mathbf{u})$, given by Hookes' law $\boldsymbol{\tau}(\mathbf{u}) = \mathbf{C} \boldsymbol{\varepsilon}(\mathbf{u})$:
 - stiffness tensor C(t, x, z);
 - ▶ infinitesimal strain tensor ε , given by the strain-displacement equation

$$\boldsymbol{\varepsilon}(\mathbf{u}) = rac{\boldsymbol{\nabla}\mathbf{u} + \boldsymbol{\nabla}\mathbf{u}^{\mathsf{T}}}{2} \quad \Leftrightarrow \quad \varepsilon_{k\ell}(\mathbf{u}) = rac{\partial_{x_k} u_\ell + \partial_{x_\ell} u_k}{2} \,.$$

Motivations	Derivation	Characterization of Love waves	Recovering
0	0.	00000	0000

Derivation of the equation Assumptions

• symmetries $C_{ijk\ell} = C_{jik\ell} = C_{k\ell ij}$ (standard, physical assumption).

 $\begin{cases} \rho \partial_{tt} \mathbf{u} = \operatorname{div}(\mathbf{C}\boldsymbol{\varepsilon}(\mathbf{u})) \,, \\ \left. \left(\mathbf{C}\boldsymbol{\varepsilon}(\mathbf{u}) \right) \cdot \mathbf{e}_3 \right|_{\mathbf{z}=\mathbf{0}} = \mathbf{0} \,. \end{cases}$

Motivations O	Derivation O●	Characterization of Love waves 00000	Re	covering medium's parameters
Derivation of th Assumptions	ne equation		{ ($\left. \begin{aligned} \partial \partial_{tt} \mathbf{u} &= \operatorname{div}(\mathbf{C}\boldsymbol{\varepsilon}(\mathbf{u})) , \\ \mathbf{C}\boldsymbol{\varepsilon}(\mathbf{u})) \cdot \mathbf{e}_{3} \right _{z=0} &= 0 . \end{aligned}$
• symmetries C _{ij}	$k_{\ell} = C_{jik\ell} = C_{k\ell ij}.$		0	x
 stratified, home 	ogeneous in (x, y) -p	lane, time-independent mediur	n.	ρ ₁ , C ₁
				ρ ₂ , C ₂
				ρ ₃ , C ₃
				:
				·
				ρ_{n-1}, C_{n-1}
				ρ _n , C _n
				$ ho_\infty$, C $_\infty$
			.	z

Motivations O	Derivation O●	Characterization of Love waves 00000	Recovering medium's parameters 0000
Derivation of the Assumptions	e equation		$\begin{cases} \rho \partial_{tt} \mathbf{u} = \operatorname{div}(\mathbf{C}\boldsymbol{\varepsilon}(\mathbf{u})) , \\ \left(\mathbf{C}\boldsymbol{\varepsilon}(\mathbf{u})\right) \cdot \mathbf{e}_{3}\big _{z=0} = 0 . \end{cases}$
• symmetries <i>C</i> _{ijkℓ}	$= C_{jik\ell} = C_{k\ell ij}.$		0 x
 stratified, homog 	geneous in (x, y) -pl	ane, time-independent medium	ρ_1, λ_1, μ_1
• isotropic media:	$C_{ijk\ell} = \lambda \delta_i^j \delta_k^\ell + \mu ($	$\left(\delta_i^k \delta_i^\ell + \delta_i^\ell \delta_i^k\right)$	ρ_2, λ_2, μ_2
with $\lambda\equiv\lambda(z)$ a	nd $\mu \equiv \mu(z)$ the La	mé parameters.	ρ_3, λ_3, μ_3
			:
		-	$\rho_{n-1}, \lambda_{n-1}, \mu_{n-1}$
		-	ρ_n, λ_n, μ_n
			$ ho_{\infty}, \lambda_{\infty}, \mu_{\infty}$

z

Motivations O	Derivation O	Characterization of Love waves	Recove 0000	ring medium's parameters
Derivation Assumption	of the equation		$\begin{cases} \rho \partial_{tt} \\ (\mathbf{C}\boldsymbol{\varepsilon} \end{cases}$	$\begin{split} \mathbf{u} &= \operatorname{div}(\mathbf{C}\boldsymbol{\varepsilon}(\mathbf{u})) , \\ (\mathbf{u})) \cdot \mathbf{e}_3 \big _{z=0} &= 0 . \end{split}$
• symmetri	ies $C_{ijk\ell} = C_{jik\ell} = C$	- klij	0	x
 stratified 	, homogeneous in ((x, y)-plane, time-independent me	edium.	ρ_1, λ_1, μ_1
 isotropic 	media: $C_{ijk\ell} = \lambda \delta_i^j$	$\delta_k^\ell + \mu \left(\delta_i^k \delta_j^\ell + \delta_i^\ell \delta_j^k ight).$		ρ_2, λ_2, μ_2
Defining	the (<i>t</i> . x)-Fourier tr	ansform		$\rho_{3}, \lambda_{3}, \mu_{3}$
Ĺ	$\hat{u}_i(z) \equiv \hat{u}_i(\boldsymbol{\xi}, z, \omega)$:	$= \int_{\mathbb{R}^2} \int_{\mathbb{R}} u_i(\mathbf{x}, z, t) e^{\mathbf{i}\omega t} e^{\mathbf{i}\boldsymbol{\xi}\cdot\mathbf{x}} \mathrm{d}t \mathrm{d}\mathbf{x}$:
Then, $ ho \partial_t$	$\mathbf{u}_{t}\mathbf{u} = div(\mathbf{C}oldsymbol{arepsilon}(\mathbf{u}))$ re	ads		$\rho_{n-1}, \lambda_{n-1}, \mu_{n-1}$
$\begin{pmatrix} (\lambda + \mu)\xi_1^2 + \mu \boldsymbol{\xi} ^2 - \\ (\lambda + \mu)\xi \end{pmatrix}$	$ \begin{pmatrix} \partial_z \mu \partial_z + \rho \omega^2 \end{pmatrix} \qquad (\lambda + \mu)\xi_2^2 + \mu \boldsymbol{\xi} $	$ - \mu \xi_1 \xi_2 \qquad -i \left(\lambda \partial_z + \partial_z \mu \right) \xi_1 \\ ^2 - \left(\partial_z \mu \partial_z + \rho \omega^2 \right) \qquad -i \left(\lambda \partial_z + \partial_z \mu \right) \xi_2 \\ (\lambda \partial_z + \partial_z \mu) \xi_2 \qquad (\lambda \partial_z + \partial_z \mu) \xi_2 $	$\begin{pmatrix} \hat{u}_1 \\ \hat{u}_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	ρ_n, λ_n, μ_n
$-1(\mu\sigma_z + \sigma_z)$	$(z\lambda) \xi_1 = -i (\mu c)$	$\mu_{z} + \sigma_{z}\lambda)\xi_{2} \qquad \mu_{z}\xi^{-} - \left(\sigma_{z}\left(\lambda + 2\mu\right)\sigma_{z} + \rho\omega^{-}\right)/\left(h\right)$	u ₃) (0)	$ ho_\infty$, λ_∞ , μ_∞
and $(\mathbf{C} \mathbf{arepsilon})$	$\left u \right)) \cdot \mathbf{e}_{3} \big _{z=0} = 0$ rea	ds		
	($i\xi_1\hat{u}_3(0) + \partial_z\hat{u}_1(0) = 0$,	7	
	{	$i\xi_2\hat{u}_3(0) + \partial_z\hat{u}_2(0) = 0$,	¥ -	
	$i\lambda(0)(\xi_1\hat{u}_1(0) + \xi_2\hat{u}_2)$	$(0)) + (\lambda(0) + 2\mu(0)) \partial_z \hat{u}_3(0) = 0.$		

Motivations O	Derivation O	Characterization of Love waves 00000	Recovering medium's paramete	rs
Derivation Assumption	of the equation		$\begin{cases} \rho \partial_{tt} \mathbf{u} = div(\mathbf{C}\boldsymbol{\varepsilon}(\mathbf{u})) ,\\ \left(\mathbf{C}\boldsymbol{\varepsilon}(\mathbf{u})\right) \cdot \mathbf{e}_{3} \big _{z=0} = 0 \end{cases}$	
 symmetrie 	es $C_{ijk\ell} = C_{jik\ell} = C_{k\ell ij}$.		0	x
 stratified, 	homogeneous in (x, y)	y)-plane, time-independent me	redium. ρ_1, λ_1, μ_1	•
 isotropic 	media: $C_{ijk\ell} = \lambda \delta^j_i \delta^\ell_k$ +	$-\mu\left(\delta_i^k\delta_j^\ell+\delta_i^\ell\delta_j^k ight).$	ρ_2, λ_2, μ_2	
Defining t	he (t, \mathbf{x}) -Fourier transf	form	$\rho_{3}, \lambda_{3}, \mu_{3}$	
û	$\hat{u}_i(z) \equiv \hat{u}_i(\boldsymbol{\xi}, z, \omega) := \int_{\mathbb{R}}$	$\int_{\mathbb{R}^2} \int_{\mathbb{R}} u_i(\mathbf{x}, z, t) e^{\mathbf{i}\omega t} e^{\mathbf{i}\boldsymbol{\xi}\cdot\mathbf{x}} \mathrm{d}t \mathrm{d}\mathbf{x}$:	
and (ϕ_1,ϕ_2)	$(a_2, \phi_3)^{T} := P(\boldsymbol{\xi})(\hat{u}_1, \hat{u}_2, \hat{u}_2, \hat{u}_2)$	$(\hat{u}_3)^{T}$, with $P(\boldsymbol{\xi}) := \begin{pmatrix} \xi_2/ \boldsymbol{\xi} & -\xi_1/ \\ \xi_1/ \boldsymbol{\xi} & \xi_2/ \boldsymbol{\xi} \\ 0 & 0 \end{pmatrix}$	$\begin{vmatrix} \boldsymbol{\xi} & 0 \\ \boldsymbol{\xi} & 0 \\ 1 \end{vmatrix}$	
Then, $ ho\partial_t$	$\mathbf{u} = div(\mathbf{C}\boldsymbol{\varepsilon}(\mathbf{u}))$ reads	X	$\rho_{n-1}, \lambda_{n-1}, \mu_{n-1}$	L
$\begin{pmatrix} (\lambda + \mu)\xi_1^2 + \mu \boldsymbol{\xi} ^2 - (\lambda + \mu)\xi_1 \\ (\lambda + \mu)\xi_1 \\ -i(\mu\partial_z + \partial_z \end{pmatrix}$	$ \begin{array}{l} \left(\partial_{z} \mu \partial_{z} + \rho \omega^{2} \right) & \left(\lambda + \mu \right) \xi_{1} \xi_{1} \xi_{2} \\ \xi_{2} & \left(\lambda + \mu \right) \xi_{2}^{2} + \mu \boldsymbol{\xi} ^{2} - \left(\boldsymbol{\ell} \cdot \boldsymbol{\ell} \right) \\ \lambda \xi_{1} & -\mathbf{i} \left(\mu \partial_{z} + \partial_{z} \right) \end{array} $	$ \begin{array}{l} \sum_{\lambda_{2}} & -\mathrm{i} \left(\lambda \partial_{x} + \partial_{z} \mu \right) \xi_{1} \\ \partial_{z} \mu \partial_{z} + \rho \omega^{2} \right) & -\mathrm{i} \left(\lambda \partial_{z} + \partial_{z} \mu \right) \xi_{2} \\ \lambda \rangle \xi_{2} & \mu \boldsymbol{\xi} ^{2} - \left(\partial_{z} \left(\lambda + 2 \mu \right) \partial_{z} + \rho \omega^{2} \right) \end{array} \right) \left(\end{array} $	$ \begin{pmatrix} \hat{u}_1\\ \hat{u}_2\\ \hat{u}_3 \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix} \qquad \qquad$	
			$ ho_\infty$, λ_∞ , μ_∞	
and $({f C}arepsilon({f u}))$	$\mathbf{u}))\cdot\mathbf{e}_{3}\big _{z=0}=0$ reads			
1	ſ	$i\xi_1\hat{u}_3(0) + \partial_z\hat{u}_1(0) = 0$,	7	
ł		$i\xi_2\hat{u}_3(0)+\partial_z\hat{u}_2(0)=0,$	¥ -	
l	$i\lambda(0) (\xi_1 \hat{u}_1(0) + \xi_2 \hat{u}_2(0))$	$+ (\lambda(0) + 2\mu(0)) \partial_z \hat{u}_3(0) = 0.$		

Motivations O	Derivation O●	Characterization of Love waves 00000	Recor	vering medium's parameters 90
Derivation Assumption	of the equation		$\begin{cases} \rho \partial \\ (\mathbf{C}) \end{cases}$	$\begin{split} _{tt} \mathbf{u} &= \operatorname{div}(\mathbf{C}\boldsymbol{\varepsilon}(\mathbf{u})) , \\ \mathbf{\varepsilon}(\mathbf{u})) \cdot \mathbf{e}_{3}\big _{z=0} = 0 . \end{split}$
• symmetrie	es $C_{ijk\ell} = C_{jik\ell} = C_{k\ell}$	ij.	0	x
 stratified, 	homogeneous in $(x,$	y)-plane, time-independent med	ium.	ρ_1, λ_1, μ_1
• isotropic	media: $C_{ijk\ell} = \lambda \delta_i^j \delta_k^\ell$	$+ \mu \left(\delta_i^k \delta_j^\ell + \delta_i^\ell \delta_j^k \right).$		ρ_2, λ_2, μ_2
Defining t	he (<i>t</i> . x)-Fourier tran	sform		$\rho_{3}, \lambda_{3}, \mu_{3}$
\hat{u}_i and (ϕ_1,ϕ_2)	$\hat{u}_i(\boldsymbol{z}) \equiv \hat{u}_i(\boldsymbol{\xi}, \boldsymbol{z}, \omega) := \hat{u}_i(\boldsymbol{\xi}, \boldsymbol{z}, \omega) := \hat{u}_i(\boldsymbol{\xi}, \boldsymbol{z}, \omega)^T := \boldsymbol{P}(\boldsymbol{\xi})(\hat{u}_1, \hat{u}_2)$	$\int_{\mathbb{R}^2} \int_{\mathbb{R}} u_i(\mathbf{x}, z, t) e^{i\omega t} e^{i\boldsymbol{\xi}\cdot\mathbf{x}} dt d\mathbf{x}$ $(\mathbf{x}, \hat{u}_3)^{T}, \text{ with } P(\boldsymbol{\xi}) := \begin{pmatrix} \xi_2/ \boldsymbol{\xi} & -\xi_1/ \boldsymbol{\xi} \\ \xi_1/ \boldsymbol{\xi} & \xi_2/ \boldsymbol{\xi} \\ & & & & & \\ \end{pmatrix}$	0 0 1	:
Then, $ ho\partial_{tt}$	$\mathbf{u} = div(\mathbf{C}\boldsymbol{\varepsilon}(\mathbf{u}))$ read	S		$\rho_{n-1}, \lambda_{n-1}, \mu_{n-1}$
$\begin{pmatrix} -\partial_{z}\mu\partial_{z} + \mu z \\ 0 \\ 0 \end{pmatrix}$	$\begin{aligned} \boldsymbol{\xi} ^2 - \rho \omega^2 & 0 \\ -\partial_z \mu \partial_z + (\lambda + 2\mu) \boldsymbol{\xi} \\ -\mathbf{i} \boldsymbol{\xi} (\mu \partial_z + \partial_z) \end{aligned}$	$ \begin{pmatrix} 0 \\ \rho \omega^2 & -i \boldsymbol{\xi} (\lambda \partial_x + \partial_x \mu) \\ \lambda & -\partial_z (\lambda + 2\mu) \partial_z + \mu \boldsymbol{\xi} ^2 - \rho \omega^2 \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ \phi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ \phi_3 \\ \phi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ \phi_3 \\ \phi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ \phi_3 \end{pmatrix} =$		ρ_n, λ_n, μ_n
,	1210		()	$ ho_\infty$, λ_∞ , μ_∞
and $({f C}arepsilon({f u}$	$\left \mathbf{u} \right) \cdot \mathbf{e}_3 \Big _{z=0} = 0$ reads			
	$\begin{cases} \\ & i\lambda(0) \boldsymbol{\xi} \phi_2(0)+(\lambda) \end{cases}$	$\begin{split} \partial_z \phi_1(0) &= 0 , \\ \mathrm{i} \boldsymbol{\xi} \phi_3(0) + \partial_z \phi_2(0) &= 0 , \\ \Lambda(0) + 2\mu(0)) \partial_z \phi_3(0) &= 0 . \end{split}$	z	

Motivations	Derivation	Characterization of Love waves	Recovering medium's parameters
0	00	00000	0000

Love waves: definition (in our context)

n+1 layers with constant shear modulus $\mu > 0$ and density $\rho > 0$. $H_1 = 0$

Motivations	Derivation	Characterization of Love waves	Recovering medium's parameters
O	OO	•0000	0000
Love waves:	definition (in our context)		

Love waves: definition (in our context)

$$n + 1 \text{ layers with constant shear modulus } \mu > 0 \text{ and density } \rho > 0.$$

$$H_{1} = 0 \xrightarrow{0} \xrightarrow{\mathbf{x}} \rho_{1}, \mu_{1}$$

$$H_{2} \xrightarrow{\rho_{1}, \mu_{1}} \rho_{2}, \mu_{2}$$

$$H_{3} \xrightarrow{\rho_{2}, \mu_{2}} \rho_{3}, \mu_{3}$$

$$H_{4} \xrightarrow{0} \rho_{3}, \mu_{3}$$

Defining $\nu_j \equiv \nu_j(\omega, k) := \omega_1 \sqrt{k^2/\omega^2 - C_j^{-2}}$ (with Im $\nu_j \leq 0$), where $\mathcal{C}_i := \sqrt{\mu_j/
ho_j}$, then on each layer ϕ is either affine or of the form $A_{i,+}e^{+\nu_j z} + A_{i,-}e^{-\nu_j z}$.

Ŭ	00	•0000		0000	
Love wa	ves: definition (in	our context)			
n+1 la A Love	ayers with constant wave exists at (ω, k) $u(\phi')' = u(\omega)^2 (\alpha/u - 1)$	shear modulus $\mu > 0$ and ϕ (c) : $\Rightarrow \exists \phi \equiv \phi_{\omega,k} \in L^2((0, -k^2/\omega^2))$ on $[0, +\infty)$	density $\rho > 0$. + ∞))\{0} s.t. $k/\omega > 1/0$	$H_1 = 0 \stackrel{0}{-} H_2 \stackrel{-}{-} H_3 \stackrel{-}{-} H_4 \stackrel{-}{-} $	$\begin{array}{c} & \mathbf{x} \\ \hline \rho_1, \ \mu_1 \\ \hline \rho_2, \ \mu_2 \\ \hline \rho_3, \ \mu_3 \end{array}$
$\begin{cases} \phi \in \mathcal{O} \\ \mu \phi' \in \mathcal{O} \end{cases}$	$\mathcal{L}([0, +\infty)) = \mu \omega (\mu) \mu$ $\mathcal{L}([0, +\infty)) \text{ with } \lim_{+\infty} \varphi$ $\in \mathcal{L}([0, +\infty)) \text{ with } \varphi$	$a \phi = 0,$ b'(0) = 0.	K/ W > 1/ X	-∞ , H _{n+1} —	:
Definin	g $ u_j \equiv u_j(\omega, k) := \omega$	$\sqrt{k^2/\omega^2-C_j^{-2}}$ (with Im $ u$	$v_j \leqslant 0$), where	H _n —	$\frac{\rho_{n-1}, \mu_{n-1}}{\rho_{n}, \mu_{n}}$
$egin{array}{lll} C_j := & \ A_{j,+} e^+ \ k/\omega > \end{array}$	$\sqrt{\mu_j/ ho_j}$, then on each $\sqrt{\mu_j/ ho_j}$, then on each $2^{ u_j z} + A_{j,-} e^{- u_j z}$. The $1/C_{\infty} \ge 0$, and A_{∞} ,	h layer ϕ is either affine or us, $\phi \in L^2((0, +\infty)) \Rightarrow \nu_{\infty}$ $_+ = 0 \Rightarrow \lim_{+\infty} \phi = 0.$	of the form $>$ 0, i.e.,	n_{n+1} —	$\rho_{\infty}, \mu_{\infty}$
				(<i>H</i> ∞ :	$z = +\infty$

Characterization of Love waves

Motivations	Derivation	Characterization of Love waves	Recovering medium's parameter
0	00	0000	0000

Love waves: characterization

Assuming for simplicity that (ω, k) is s.t. $\nu_j \neq 0$, if $\phi \equiv \phi_{\omega,k}$ exists, then

$$\phi(z) = \begin{cases} 2\alpha_1 \cosh[\nu_1 z], & \text{if} \quad 0 \leq z < H_2, \\ \alpha_j e^{-\nu_j z} + \beta_j e^{+\nu_j z}, & \text{if} \quad H_j \leq z < H_{j+1}, \quad \forall j \in \llbracket 2, n \rrbracket, \\ \alpha_{n+1} e^{-\nu_{n+1} z}, & \text{if} \quad H_{n+1} \leq z < +\infty. \end{cases}$$

Love waves: characterization

Assuming for simplicity that (ω, k) is s.t. $\nu_j \neq 0$, if $\phi \equiv \phi_{\omega,k}$ exists, then

$$\phi(z) = \begin{cases} 2\alpha_1 \cosh[\nu_1 z], & \text{if} \quad 0 \leq z < H_2, \\ \alpha_j e^{-\nu_j z} + \beta_j e^{+\nu_j z}, & \text{if} \quad H_j \leq z < H_{j+1}, \quad \forall j \in \llbracket 2, n \rrbracket, \\ \alpha_{n+1} e^{-\nu_{n+1} z}, & \text{if} \quad H_{n+1} \leq z < +\infty. \end{cases}$$

The 2*n* continuity conditions (on ϕ and $\mu \phi'$) at the boundaries $\{H_j\}_{2 \leq j \leq n+1}$ yield

$$\begin{cases} 2\alpha_{1}\cosh[\nu_{1}H_{2}] = \beta_{2}e^{+\nu_{2}H_{2}} + \alpha_{2}e^{-\nu_{2}H_{2}}, \\ 2\mu_{1}\nu_{1}\alpha_{1}\sinh[\nu_{1}H_{2}] = \mu_{2}\nu_{2}\left(\beta_{2}e^{+\nu_{2}H_{2}} - \alpha_{2}e^{-\nu_{2}H_{2}}\right), \\ \beta_{j-1}e^{+\nu_{j-1}H_{j}} + \alpha_{j-1}e^{-\nu_{j-1}H_{j}} = \beta_{j}e^{+\nu_{j}H_{j}} + \alpha_{j}e^{-\nu_{j}H_{j}}, \qquad \forall j \in [\![3,n]\!], \\ \mu_{j-1}\nu_{j-1}\left(\beta_{j-1}e^{+\nu_{j-1}H_{j}} - \alpha_{j-1}e^{-\nu_{j-1}H_{j}}\right) = \mu_{j}\nu_{j}\left(\beta_{j}e^{+\nu_{j}H_{j}} - \alpha_{j}e^{-\nu_{j}H_{j}}\right), \qquad \forall j \in [\![3,n]\!], \\ \beta_{n}e^{+\nu_{n}H_{n+1}} + \alpha_{n}e^{-\nu_{n}H_{n+1}} = \alpha_{n+1}e^{-\nu_{n+1}H_{n+1}}, \\ \mu_{n}\nu_{n}\left(\beta_{n}e^{+\nu_{n}H_{n+1}} - \alpha_{n}e^{-\nu_{n}H_{n+1}}\right) = -\mu_{n+1}\nu_{n+1}\alpha_{n+1}e^{-\nu_{n+1}H_{n+1}}. \end{cases}$$

Love waves: characterization

Assuming for simplicity that (ω, k) is s.t. $\nu_j \neq 0$, if $\phi \equiv \phi_{\omega,k}$ exists, then

$$\phi(z) = \begin{cases} 2\alpha_1 \cosh[\nu_1 z], & \text{if} \quad 0 \leq z < H_2, \\ \alpha_j e^{-\nu_j z} + \beta_j e^{+\nu_j z}, & \text{if} \quad H_j \leq z < H_{j+1}, \quad \forall j \in \llbracket 2, n \rrbracket, \\ \alpha_{n+1} e^{-\nu_{n+1} z}, & \text{if} \quad H_{n+1} \leq z < +\infty. \end{cases}$$

The 2*n* continuity conditions (on ϕ and $\mu \phi'$) at the boundaries $\{H_j\}_{2 \leqslant j \leqslant n+1}$ yield

$$\begin{cases} 2\alpha_{1}\cosh[\nu_{1}H_{2}] = \beta_{2}e^{+\nu_{2}H_{2}} + \alpha_{2}e^{-\nu_{2}H_{2}}, \\ 2\mu_{1}\nu_{1}\alpha_{1}\sinh[\nu_{1}H_{2}] = \mu_{2}\nu_{2}\left(\beta_{2}e^{+\nu_{2}H_{2}} - \alpha_{2}e^{-\nu_{2}H_{2}}\right), \\ \beta_{j-1}e^{+\nu_{j-1}H_{j}} + \alpha_{j-1}e^{-\nu_{j-1}H_{j}} = \beta_{j}e^{+\nu_{j}H_{j}} + \alpha_{j}e^{-\nu_{j}H_{j}}, \qquad \forall j \in [\![3,n]\!], \\ \mu_{j-1}\nu_{j-1}\left(\beta_{j-1}e^{+\nu_{j-1}H_{j}} - \alpha_{j-1}e^{-\nu_{j-1}H_{j}}\right) = \mu_{j}\nu_{j}\left(\beta_{j}e^{+\nu_{j}H_{j}} - \alpha_{j}e^{-\nu_{j}H_{j}}\right), \qquad \forall j \in [\![3,n]\!], \\ \beta_{n}e^{+\nu_{n}H_{n+1}} + \alpha_{n}e^{-\nu_{n}H_{n+1}} = \alpha_{n+1}e^{-\nu_{n+1}H_{n+1}}, \\ \mu_{n}\nu_{n}\left(\beta_{n}e^{+\nu_{n}H_{n+1}} - \alpha_{n}e^{-\nu_{n}H_{n+1}}\right) = -\mu_{n+1}\nu_{n+1}\alpha_{n+1}e^{-\nu_{n+1}H_{n+1}}. \end{cases}$$

A Love wave exists if there exists a non-zero solution $(\alpha_1, \beta_1, \alpha_2, \beta_2, \dots, \alpha_{n+1}, \beta_{n+1})$.

$$\begin{array}{c|cccc} \underbrace{\text{Motivations}}_{0} & \underbrace{\text{Derivation}}_{0} & \underbrace{\text{Characterization of Low evaluations}}_{0000} & \underbrace{\text{Recovering medium's parameter}}_{0000} \\ \hline \\ \text{Love waves: characterization} \\ \text{I.e., if } D_n := \det \mathbb{M}_n = 0, \text{ for } \mathbb{M}_n := \begin{pmatrix} L_1^r & R_2 & \mathbb{O}_2 & \mathbb{O}_2 & \mathbb{O}_2 & 0 \\ 0 & L_2 & R_3 & \ddots & \mathbb{O}_2 & \vdots \\ 0 & 2 & \ddots & \ddots & \ddots & \mathbb{O}_2 & \vdots \\ 0 & 0 & 2 & \mathbb{O}_2 & \ddots & \mathbb{O}_2 & \vdots \\ 0 & 0 & 0 & 2 & \mathbb{O}_2 & \mathbb{O}_2 & L_n & R_{n+1}^I \end{pmatrix} \\ \text{where } L_1^r := 2 \begin{pmatrix} \cosh[\nu_1 H_2] \\ \mu_1 \nu_1 \sinh[\nu_1 H_2] \end{pmatrix}, R_{n+1}^{l} := \begin{pmatrix} -e^{-\nu_n + 1H_{n+1}} \\ +\mu_{n+1} \nu_{n+1}e^{-\nu_{n+1}H_{n+1}} \end{pmatrix}, \text{ and} \\ \forall j \ge 2, \begin{cases} L_j := \begin{pmatrix} +e^{-\nu_j H_j + 1} & +e^{+\nu_j H_{j+1}} \\ -\mu_j \nu_j e^{-\nu_j H_{j+1}} & +\mu_j \nu_j e^{+\nu_j H_{j+1}} \end{pmatrix}, \\ R_j := \begin{pmatrix} -e^{-\nu_j H_j} & -e^{+\nu_j H_j} \\ +\mu_j \nu_j e^{-\nu_j H_j} & -\mu_j \nu_j e^{+\nu_j H_j} \end{pmatrix}. \end{cases}$$

$$\begin{array}{c|cccc} \underbrace{\text{Motivations}}_{0} & \underbrace{\text{Derivation}}_{0} & \underbrace{\text{Characterization of Low eaves}}_{0000} & \underbrace{\text{Recovery medium's parameter}}_{0000} \\ \hline \end{array}$$
Love waves: characterization
$$I.e., \text{ if } D_n := \det \mathbb{M}_n = 0, \text{ for } \mathbb{M}_n := \begin{pmatrix} L_1^r & R_2 & \mathbb{O}_2 & \mathbb{O}_2 & \mathbb{O}_2 & 0 \\ 0 & L_2 & R_3 & \ddots & \mathbb{O}_2 & \vdots \\ 0 & 2 & \ddots & \ddots & \ddots & \mathbb{O}_2 & \vdots \\ 0 & 0 & 2 & \mathbb{O}_2 & \ddots & \mathbb{O}_2 & \vdots \\ 0 & 0 & 0 & 2 & \mathbb{O}_2 & \mathbb{O}_2 & L_n & R_{n+1}^I \end{pmatrix} \\ \text{where } L_1^r := 2 \begin{pmatrix} \cosh[\nu_1 H_2] \\ \mu_1 \nu_1 \sinh[\nu_1 H_2] \end{pmatrix}, R_{n+1}^r := \begin{pmatrix} -e^{-\nu_n + 1H_{n+1}} \\ +\mu_{n+1} \nu_{n+1}e^{-\nu_{n+1}H_{n+1}} \end{pmatrix}, \text{ and} \\ \forall j \ge 2, \begin{cases} L_j := \begin{pmatrix} +e^{-\nu_j H_{j+1}} & +e^{+\nu_j H_{j+1}} \\ -\mu_j \nu_j e^{-\nu_j H_{j+1}} & +\mu_j \nu_j e^{+\nu_j H_{j+1}} \end{pmatrix}, \\ R_j := \begin{pmatrix} -e^{-\nu_j H_j} & -e^{+\nu_j H_j} \\ +\mu_j \nu_j e^{-\nu_j H_j} & -\mu_j \nu_j e^{+\nu_j H_j} \end{pmatrix}. \end{cases}$$

→ We read from it that there is at most one solution: the submatrix $\tilde{\mathbb{M}}_n$ where the first row and the last column are removed, is block (upper) triangular with diagonal blocks $2\mu_1\nu_1 \sinh[\nu_1H_2]$ and the L_j 's, hence det $\tilde{\mathbb{M}}_n = 2^n \sinh[\nu_1H_2] \prod_{i=1}^n \mu_i \nu_j \neq 0$.

$$\begin{array}{c|ccccc} \underbrace{\text{Motivations}}_{0} & \underbrace{\text{Derivation}}_{0} & \underbrace{\text{Characterization of Low waves}}_{0000} & \underbrace{\text{Recovering medium's paramete}}_{0000} \\ \hline \\ \hline \\ \text{Love waves: characterization} \\ \text{I.e., if } D_n := \det \mathbb{M}_n = 0, \text{ for } \mathbb{M}_n := \begin{pmatrix} L_1' & R_2 & \mathbb{O}_2 & \mathbb{O}_2 & \mathbb{O}_2 & 0 \\ 0 & L_2 & R_3 & \ddots & \mathbb{O}_2 & \vdots \\ \vdots & \mathbb{O}_2 & \ddots & \ddots & \ddots & \mathbb{O}_2 & \vdots \\ \vdots & \mathbb{O}_2 & \ddots & \ddots & \ddots & \mathbb{O}_2 & \vdots \\ \vdots & \mathbb{O}_2 & 0 & \mathbb{O}_2 & \mathbb{O}_2 & L_n & R_{n+1}^{\prime} \end{pmatrix} \\ \text{where } L_1' := 2 \begin{pmatrix} \cosh[\nu_1 H_2] \\ \mu_1 \nu_1 \sinh[\nu_1 H_2] \end{pmatrix}, R_{n+1}' := \begin{pmatrix} -e^{-\nu_n + 1H_{n+1}} \\ +\mu_{n+1} \nu_{n+1} e^{-\nu_{n+1}H_{n+1}} \end{pmatrix}, \text{ and} \\ \forall j \ge 2, \begin{cases} L_j := \begin{pmatrix} +e^{-\nu_j H_{j+1}} & +e^{+\nu_j H_{j+1}} \\ -\mu_j \nu_j e^{-\nu_j H_{j+1}} & +\mu_j \nu_j e^{+\nu_j H_{j+1}} \end{pmatrix}, \\ R_j := \begin{pmatrix} -e^{-\nu_j H_j} & -e^{+\nu_j H_j} \\ +\mu_j \nu_j e^{-\nu_j H_j} & -\mu_j \nu_j e^{+\nu_j H_j} \end{pmatrix}. \end{cases}$$

→ We read from it that there is at most one solution: the submatrix M_n where the first row and the last column are removed, is block (upper) triangular with diagonal blocks $2\mu_1\nu_1 \sinh[\nu_1H_2]$ and the L_j 's, hence det $M_n = 2^n \sinh[\nu_1H_2] \prod_{j=1}^n \mu_j\nu_j \neq 0$. (It also holds if some ν_j 's are zero.)

Love waves: dispersion relation

Proposition: dispersion relation

Let $n \in \mathbb{N} \setminus \{0\}$ and $T_j := H_{j+1} - H_j$, $j \in \llbracket 1, n+1 \rrbracket$, be the layers' thickness. Then,

$$\exists \text{ Love wave at } (\omega, k) \Leftrightarrow \begin{cases} f_n(\omega, k) := \mu_{\infty} \nu_{\infty}(\omega, k) P_n(\omega, k) + Q_n(\omega, k) = 0, \\ k \neq \omega/C_{\infty}, \end{cases}$$

where the P_n 's and Q_n 's are defined recursively by $P_0 = 1$, $Q_0 = 0$, and

$$egin{pmatrix} P_m \ Q_m \end{pmatrix} = M_m egin{pmatrix} P_{m-1} \ Q_{m-1} \end{pmatrix} \quad ext{for all } m \in \llbracket 1, n
rbracket,$$

with

$$M_m := \begin{cases} \begin{pmatrix} \cosh[\nu_m T_m] & \sinh[\nu_m T_m]/(\mu_m \nu_m) \\ \mu_m \nu_m \sinh[\nu_m T_m] & \cosh[\nu_m T_m] \end{pmatrix} & \text{if } \nu_m \neq 0, \\ \begin{pmatrix} 1 & T_m/\mu_m \\ 0 & 1 \end{pmatrix} & \text{if } \nu_m = 0. \end{cases}$$

" $k \neq \omega/C_{\infty}$ " can be replaced by " $\omega/C_{\infty} < k < \omega/C_0$ " ($C_0 := \min_{[0,+\infty)} C$), because the solutions to $f_n(\omega, k) = 0$ are s.t. $k \in [\omega/C_{\infty}, \omega/C_0)$.

Motivations O	Derivation OO	Characterization of Love waves	Recovering medium's paramete

Love waves: numerics

1/C

1/C₁

1/C₃

1/C₀

1/C7

Definition-Lemma

Let $n \ge 1$. For any fixed $\omega > 0$, let the $k_{\ell}(\omega)$'s be the decreasingly ordered values $k \in \mathbb{R} \setminus \{\omega/C_{\infty}\}$ for which (ω, k) solves the dispersion relation $f_n(\omega, k) = 0$, i.e., a Love wave exists. Then, $k_{\ell} \in (\omega/C_{\infty}, \omega/C_0)$ and f_n is real-valued on $(0, +\infty) \times [\omega/C_{\infty}, \omega/C_0)$.

Motivations	Derivation	Characterization of Love waves	Recovering medium's parameters
0	00	00000	0000

Theorem

Let $n \ge 1$. For any ℓ , there exists $\omega_{\ell} \ge 0$ s.t.

$$(\omega_{\ell}, +\infty)
ightarrow (1/\mathcal{C}_{\infty}, 1/\mathcal{C}_{0})$$

 $\omega \mapsto k_{\ell}(\omega)/\omega$

is analytic, bijective, increasing.

Motivations	Derivation	Characterization of Love waves	Recovering medium's parameters
0	00	00000	0000

Theorem

Let $n \ge 1$. For any ℓ , there exists $\omega_{\ell} \ge 0$ s.t.

$$(\omega_{\ell}, +\infty) \rightarrow (1/C_{\infty}, 1/C_{0})$$

 $\omega \mapsto k_{\ell}(\omega)/\omega$

is analytic, bijective, increasing.

 $\Rightarrow C_{\infty}$ and $C_0 := \min_i C_i$ are the inverse of the upper and lower limit values.

Motivations	Derivation	Characterization of Love waves	Recovering medium's parameters
0	00	00000	0000

Theorem

Let $n \ge 1$. For any ℓ , there exists $\omega_{\ell} \ge 0$ s.t.

$$(\omega_{\ell}, +\infty) \rightarrow (1/\mathcal{C}_{\infty}, 1/\mathcal{C}_{0})$$

 $\omega \mapsto k_{\ell}(\omega)/\omega$

is analytic, bijective, increasing.

Idea of proof:

 ω fixed: k_ℓ(ω)'s in finite number, hence isolated.Uses the simplicity of the Love waves and complex analysis (Identity theorem).

Motivations	Derivation	Characterization of Love waves	Recovering medium's parameters
0	00	00000	0000

Theorem

Let $n \ge 1$. For any ℓ , there exists $\omega_{\ell} \ge 0$ s.t.

 $(\omega_{\ell}, +\infty) \rightarrow (1/C_{\infty}, 1/C_{0})$ $\omega \mapsto k_{\ell}(\omega)/\omega$

is analytic, bijective, increasing.

Idea of proof:

- ω fixed: $k_{\ell}(\omega)$'s in finite number, hence isolated.
- Branches ω → (k_ℓ(ω), φ_ℓ(ω)) exist on an open interval, with k_ℓ and φ_ℓ analytic. Uses by analytic perturbation theory (Kato–Rellich theorem), relying on the simplicity and isolation.

Motivations	Derivation	Characterization of Love waves	Recovering medium's parameters
0	00	00000	0000

Theorem

Let $n \ge 1$. For any ℓ , there exists $\omega_{\ell} \ge 0$ s.t.

$$(\omega_{\ell}, +\infty) \to (1/C_{\infty}, 1/C_{0})$$

 $\omega \mapsto k_{\ell}(\omega)/\omega$

is analytic, bijective, increasing.

Idea of proof:

- ω fixed: $k_{\ell}(\omega)$'s in finite number, hence isolated.
- Branches $\omega \mapsto (k_{\ell}(\omega), \phi_{\ell}(\omega))$ exist on an open interval, with k_{ℓ} and ϕ_{ℓ} analytic.
- Increasing: direct computation. Since $\omega \mapsto k_{\ell}(\omega)/\omega$ is differentiable.

Motivations O	Derivation OO	Characterization of Love waves	Recovering medium's parameters
------------------	------------------	--------------------------------	--------------------------------

Definition: number of branches $k_{\ell}(\omega)/\omega$ above or equal to y

Let $n \ge 1$, $\omega > 0$ and $y \in (1/C_{\infty}, 1/C_0)$. Define

$$\mathsf{N}(\omega, y) := \# \left\{ \ell \ge 1 : \frac{k_{\ell}(\omega)}{\omega} \ge y \right\}$$

with $k_{\ell}(\omega) = -\infty$ if k_{ℓ} is undefined at ω .

Motivations	Derivation	Characterization of Love waves	Recovering medium's parameters
U C	00	00000	0000

Definition: number of branches $k_{\ell}(\omega)/\omega$ above or equal to y

Let $n \ge 1$, $\omega > 0$ and $y \in (1/C_{\infty}, 1/C_{0})$. Define

$$\mathcal{N}(\omega,y) := \# \left\{ \ell \geqslant 1 \, : \, rac{k_\ell(\omega)}{\omega} \geqslant y
ight\} \, = \, \max \left\{ \ell \geqslant 1 \, : \, rac{k_\ell(\omega)}{\omega} \geqslant y > rac{k_{\ell+1}(\omega)}{\omega}
ight\},$$

with $k_{\ell}(\omega) = -\infty$ if k_{ℓ} is undefined at ω .

Note: $\omega \mapsto \mathcal{N}(\omega, y)$ is nondecreasing for $y \in (1/\mathcal{C}_{\infty}, 1/\mathcal{C}_0)$ —monotonicity of $\frac{k_{\ell}(\omega)}{\omega}$.

Motivations O	Derivation OO	Characterization of Love waves	Recovering medium's parameters
------------------	------------------	--------------------------------	--------------------------------

Weyl's law

$$\begin{array}{l} \text{Define } \bar{\nu}_j \equiv \bar{\nu}_j(y) := \frac{\nu_j(\omega, \omega y)}{\omega} = \sqrt{y^2 - C_j^{-2}}. \\ (n = 1) \ \text{For } y \in [1/\mathcal{C}_{\infty}, 1/\mathcal{C}_0), \ \mathcal{N}(\omega, y) \sim \frac{\omega}{\pi} |\tilde{\nu}_1(y)| \ \widetilde{T}_1 \ \text{as } \omega \to +\infty. \\ (n = 2) \ \text{For } y \in [1/\mathcal{C}_{\infty}, 1/\mathcal{C}_0), \ \text{as } \omega \to +\infty, \\ \\ \begin{cases} \mathcal{N}(\omega, y) \sim \frac{\omega}{\pi} |\tilde{\nu}_1(y)| \ \widetilde{T}_1, & \text{if } y \in [1/\widetilde{\mathcal{C}}_2, 1/\mathcal{C}_0), \\ \mathcal{N}(\omega, y) \sim \frac{\omega}{\pi} \left(|\tilde{\nu}_1(y)| \ \widetilde{T}_1 + |\tilde{\nu}_2(y)| \ \widetilde{T}_2 \right), & \text{if } y \in [1/\mathcal{C}_{\infty}, 1/\widetilde{\mathcal{C}}_2). \end{cases} \\ (n \geq 3) \ \text{For } y \in [1/\widetilde{\mathcal{C}}_2, 1/\mathcal{C}_0), \ \mathcal{N}(\omega, y) \sim \frac{\omega}{\pi} |\tilde{\nu}_1(y)| \ \widetilde{T}_1 \ \text{as } \omega \to +\infty. \end{array}$$

Motivations O	Derivation OO	Characterization of Love waves	Recovering medium's parameters
------------------	------------------	--------------------------------	--------------------------------

Weyl's law

$$\begin{array}{l} \text{Define } \bar{\nu}_j \equiv \bar{\nu}_j(y) := \frac{\nu_j(\omega, \omega y)}{\omega} = \sqrt{y^2 - C_j^{-2}}. \\ (n = 1) \ \text{For } y \in [1/C_{\infty}, 1/C_0), \ N(\omega, y) \sim \frac{\omega}{\pi} |\tilde{\nu}_1(y)| \widetilde{T}_1 \ \text{as } \omega \to +\infty. \\ (n = 2) \ \text{For } y \in [1/C_{\infty}, 1/C_0), \ \text{as } \omega \to +\infty, \\ \\ \begin{cases} N(\omega, y) \sim \frac{\omega}{\pi} |\tilde{\nu}_1(y)| \widetilde{T}_1, & \text{if } y \in [1/\widetilde{C}_2, 1/C_0), \\ N(\omega, y) \sim \frac{\omega}{\pi} \left(|\tilde{\nu}_1(y)| \widetilde{T}_1 + |\tilde{\nu}_2(y)| \widetilde{T}_2 \right), & \text{if } y \in [1/C_{\infty}, 1/\widetilde{C}_2). \end{cases} \\ (n \geq 3) \ \text{For } y \in [1/\widetilde{C}_2, 1/C_0), \ N(\omega, y) \sim \frac{\omega}{\pi} |\tilde{\nu}_1(y)| \widetilde{T}_1 \ \text{as } \omega \to +\infty. \end{array}$$

Conjecture for $n \ge 3$

For
$$y \in [1/C_{\infty}, 1/C_0)$$
, as $\omega \to +\infty$,
 $N(\omega, y) \sim \frac{\omega}{\pi} \sum_{\rho=1}^{j} |\tilde{\nu}_{\rho}(y)| \widetilde{T}_{\rho}$, if $y \in [1/\widetilde{C}_{j+1}, 1/\widetilde{C}_{j})$.

Weyl's law

$$\begin{array}{l} \text{Define } \bar{\nu}_j \equiv \bar{\nu}_j(y) := \frac{\nu_j(\omega, \omega y)}{\omega} = \sqrt{y^2 - C_j^{-2}}. \\ (n = 1) \ \text{For } y \in [1/C_{\infty}, 1/C_0), \ N(\omega, y) \sim \frac{\omega}{\pi} |\tilde{\nu}_1(y)| \ \widetilde{T}_1 \ \text{as } \omega \to +\infty. \\ (n = 2) \ \text{For } y \in [1/C_{\infty}, 1/C_0), \ \text{as } \omega \to +\infty, \\ \\ \begin{cases} N(\omega, y) \sim \frac{\omega}{\pi} |\tilde{\nu}_1(y)| \ \widetilde{T}_1 \ , & \text{if } y \in [1/\widetilde{C}_2, 1/C_0) \ , \\ N(\omega, y) \sim \frac{\omega}{\pi} \left(|\tilde{\nu}_1(y)| \ \widetilde{T}_1 + |\tilde{\nu}_2(y)| \ \widetilde{T}_2 \right), & \text{if } y \in [1/C_{\infty}, 1/\widetilde{C}_2) \ . \end{cases} \\ (n \ge 3) \ \text{For } y \in [1/\widetilde{C}_2, 1/C_0), \ N(\omega, y) \sim \frac{\omega}{\pi} |\tilde{\nu}_1(y)| \ \widetilde{T}_1 \ \text{as } \omega \to +\infty. \end{array}$$

Recovering parameters:

- The "lines of accumulation" of branches are the $1/C_j = \sqrt{\rho_j/\mu_j}$. Hence we also know the functions $\tilde{\nu}_j$.
- The asymptotics give the thickness T_j .

Thank you for your attention!

Rayleigh waves

2 + 1-layers.